본 연구에서는 스웨덴의 신예 작가 요나스 요나슨이 2009년에 발표한 문학작품 『창문 넘어 도망친 100세 노인』을 중심으로 삶의 비극성을 긍 정적으로 재조명하고 전환시키기 위한 온작품읽기 과정을 통해 노년기 삶의 의미를 강화시킬 수 있는 미래시간조망과 희망의 직·간접적 사례를 탐구하고자 하였다. 이 작품은 알란 칼손이란 100세 노인을 세계사의 여 러 현장에 등장시키고 작가 특유의 개그 요소와 묵직하지 않은 문체로 서술해내면서 알란만의 '될 대로 될 것이다'라는 마인드와 새로운 삶의 시점을 풀어낸 소설이다. 텍스트 사례를 분석한 결과, 미래시간조망과 희 망은 노년기 삶의 의미를 강화시켜 줄 수 있는 중요요인으로 작용할 가능 성이 매우 높은 것으로 나타났다. 이러한 결과를 근거로 노년기 삶의 의미 에 대한 보호요인으로서 미래시간조망과 희망을 확장할 수 있는 방안을 논의하였다.
Skeletal muscle is an organ that regulates biological metabolic energy. Its dysfunction causes decline of body functions and disability, thus deteriorating the overall quality of life. Various materials are being developed with an anti-sarcolytic effect. However, anti-sarcolytic effect of Sinomenium acutum rhizomes extract (SAE) remains unclear. Therefore, this study aimed to investigate anti-muscle atrophy effects of SAE and its alkaloids, including sinomenine (SIN), magnoflorine (MF), acutumine (ACU), and N-ferultyramine (NFT) isolated from SAE, on dexamethasone (Dex)-induced myotubules. C2C12 myogenic cells differentiated for 6 days were treated with 1 mM Dex for 24 hours. Induction of muscular atrophy was confirmed by a decrease in myogenin expression. We found that Dex increased expression levels of muscle-specific ubiquitin ligases MuRF1 and MAFbx/atrogin-1. However, mRNA and protein levels of these muscle-specific ubiquitin ligases were significantly reduced by cotreatment with SIN, MF, and NFT in myotubes. Glucose uptake reduced by Dex in myotubules were also restored by SIN, MF, and NFT treatments. These results suggest that SIN, MF, and NFT can reduce muscle wasting and enhance glucose uptake in Dex-treated myotubes, highlighting their potential as therapeutic agents to prevent muscle atrophy.
This study investigated major constituents and anti-inflammatory effects of an ethanol extract of Platycodon grandiflorum leaves. Through HPLC analysis, chlorogenic acid and luteolin-7-O-glucoside were identified as predominant constituents in the ethanol extract. Their anti-inflammatory effects were evaluated using murine macrophage (RAW 264.7 cells) and human lung carcinoma cells (NCI-H292 & A549). The ethanol extract significantly (p<0.01) inhibited the production of nitrite, interleukin-6 (IL-6), and prostaglandin E2 (PGE2) induced by lipopolysaccharide (LPS) in RAW 264.7 cells. Furthermore, the ethanol extract suppressed the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in RAW 264.7 cells stimulated with LPS. In NCI-H292 and A549 cells, treatment with the ethanol extract significantly (p<0.05) decreased levels of pro-inflammatory cytokines IL-6 and IL-8 induced by IL-1β. The phosphorylation of ERK rather than JNK in the mitogen-activated protein kinase signaling pathway was observed to be a more important mediator in the down-regulation of pro-inflammatory cytokines in NCI-H292 cells. These findings suggest that the ethanol extract of Platycodon grandiflorum leaves containing luteolin-7-O-glucoside exhibits promising anti-inflammatory properties.
어린이보호구역에서 발생하는 아동 교통사고 피해 사례 증가에 따라 교육시설 주변의 보행자용 방호 울타리의 현황을 파악 하고자 현장 조사를 수행하였다. 그 결과, 방호 울타리의 기울어짐 및 부식 등 다양한 구조적 결함을 확인하였으며, 이 연구는 이에 대 한 대책으로 FRP(Fiber Reinforced Polymer)를 사용한 보행자용 방호 울타리를 설계하였고, 상용 유한요소해석 프로그램인 ABAQUS를 사용해 성능 및 타당성을 검증하였다. 해석 결과, CFRP와 GFRP로 제작된 지지부는 최대 파손 지수가 0.03, 0.1로 나타났으며, 지지부 와 방호 구조재의 변위는 기존 강재 지지부 대비 1.16~3.07배 증가한 것으로 나타났다. 또한, 설계 변수 연구를 위해 FRP의 섬유 배향 각을 =0, 15, 30, 45, 60, 75, 90도로 구분하여 CFRP와 GFRP 지지부 간의 강성 차이를 비교하였으며, =0에서 CFRP가 GFRP 대비 최대 2.94배 높게 나타났다. 결론적으로 CFRP와 GFRP는 방호 울타리로서 충분한 성능을 보이지만, 설계 기준에 따르면 보행자용 방 호 울타리는 차량 충돌에 의한 하중은 고려하지 않으므로 이와 관련된 추가 연구가 수행되어야 한다.
When occurring at a nuclear power plant (NPP) by accidents, accurate prediction and identification of the process of radioactive material dispersing into atmosphere is important to protect public and environment. Atmosphere dispersion of radioactive materials is significantly influenced by wind direction and wind speed. The government and nuclear operator continuously monitor wind data at nuclear sites through meteorological tower to prepare for such accidents involving the release of radioactive materials. The purpose of this study is to construct wind rose diagrams at 5 NPP sites (Kori, Saewool, Wolsong, Hanbit, Hanul). Wind roses serve as invaluable tool for identifying wind patterns in each region and visualizing wind directions. This can be utilized to predict the dispersion pathway and extent range of radioactive materials carried by the wind. This program will take on the role of establishing appropriate evacuation routes or shelter locations for residents when reliable wind data is not immediately available during an NPP accident. The wind data used in the study was collected from a meteorological tower located at the NPP site, and measurements were taken at 1-hour intervals for each operation over a period of ten years. The collected data underwent preprocessing, followed by the development of Python code to render the wind rose diagrams in an interpretable format. The future direction of this study will be focused on enhancing this program by integrating geographical mapping capabilities. With these advancements, it will become feasible to superimpose shelter positions on a map in accordance with prevailing wind directions. These improvements will contribute to the development of additional protective measures for residents and the proposal of alternative shelter options in response to potential radioactive material releases.
본 연구는 소년보호처분 중 1호 처분을 받고 청소년회복센터에 위탁 되어 있는 청 소년들을 대상으로 자살행동 보호요인을 밝히고자 수행되었다. 부산 6개소, 경남 6 개소, 울산 2개소에 소재한 청소년회복센터를 직접 방문하여 보호청소년 92명을 대 상으로 조사를 실시하였다. 또한 무선적으로 25명을 선택하여 심층면접을 실시하였 다. 그 결과를 보면 자살행동의 보호요인으로 심리적 요인인 감정통제가 인지적 와해 에 유의미한 영향을 미치는 요인으로 나타났다. 다음으로 자살생각에 환경적요인인 교사지지가 유의미한 결과가 도출되어 보호요인으로 작용하였다. 자살계획에 영향을 주는 요인으로는 청소년회복센터의 지지가 유의미한 정적요인으로 밝혀졌다. 자살시 도를 낮추는 보호요인에서는 부(父)와의 친밀감이 유의미한 영향을 미치는 요인으로 작용하였다. 부(父)와의 친밀감은 인지적 와해, 자살생각, 자살계획과 자살시도 사이에서 유의 미한 영향을 미치는 요인으로 나타났고, 인지적 와해에서 자살시도로 이어지는 경우 에 자살시도를 예방하는 보호효과가 있는 것으로 밝혀졌다. 본 연구의 결과들을 토대 로 보호소년 및 청소년들의 자살예방을 위한 실증적 자료에 도움이 될 것으로 기대해 본다.
Opuntia ficus-indica (OFI), or Pricky Pear Cactus, is effective in cough, fever, pain and anti-inflammatory action, and asthma. This study aims to investigate the effect of OFI stem extract on the respiratory system of animal models induced by ovalbumin (OVA) and fine dust (PM10) and to analyze the indicator substances of OFI stem extract. In the OFI stem 50% ethanol extract (OFI-50E) administration group, the number of immune cells and inflammatory cytokines in the lungs and BAL decreased to a similar level to the positive control group administered with dexamethasone. In addition, OVA-specific IgE and airway hyper-reactivity (AHR) were significantly reduced. Also, the deposition of PM10 observed through staining of lung tissue was clearly reduced in the OFI-50E 200 mg/kg administration group. The anti-inflammatory mechanism in the lung was found to obstruct the production of inflammatory cytokines by impeding the NF-kB and MAPK pathways through the inhibition of IRAK-1 active cells. The main component of OFI stem 50% ethanol extract was identified to be narcissin. According to the study results, OFI is expected to be a respiratory health functional food.
Selenium (Se) is known as an antioxidant mineral and heme iron is a major source for iron intake which can promote carcinogenesis in the body. This study was to investigate the effect of Se on heme-aggravated colon carcinogenesis in mice. Three experimental groups included control [normal diet + AOM (10 mg/kg body weight in saline)/DSS (2% in the drinking water)], [AOM/DSS + hemin (534 mg/kg body weight in CMC)], and [AOM/DSS + hemin + Se (2.82 mg/kg diet in CMC)] groups. Colonic mucosa were stained with 0.3% methylene blue and the colonic polyps, aberrant crypt (AC) and aberrant crypt foci (ACF) were counted. Lipid peroxidation in liver was evaluated by the thiobarbituric acid-reactive substances (TBARS) assay. The number of polyps in the hemin + Se group was 31.6% lower than that in the control group, and 41.4% lower than that in the hemin group. The number of AC in the hemin + Se group was 42.8% lower than that in the control group, and 49.1% lower than that in the hemin group. The number of ACF in the hemin + Se group was 49.0% lower than that in the control group, 45.7% than that in the hemin group. Hepatic TBARS level in the hemin + Se group was significantly low compared with the control group or the hemin group (p<0.05). These findings suggest that Se treatment may be protective against colon carcinogenesis promoted by a high heme-containing diet.
In the wake of the Fukushima NPP accident, research on the safety evaluation of spent fuel storage facilities for natural disasters such as earthquakes and tsunamis has been continuously conducted, but research on the protection integrity of spent fuel storage facilities is insufficient in terms of physical protection. In this study, accident scenarios that may occur structurally and thermally for spent fuel storage facilities were investigated and safety assessment cases for such scenarios were analyzed. Major domestic and international institutions and research institutes such as IAEA, NEA, and NRC provide 13 accident scenario types for Spent Fuel Pool, including loss-of-coolant accidents, aircraft collisions, fires, earthquakes. And 10 accident scenario types for Dry Storage Cask System, including transportation cask drop accidents, aircraft collisions, earthquakes. In the case of Spent Fuel Pool, the impact of the cooling function loss accident scenario was mainly evaluated through empirical experiments, and simulations were performed on the dropping of spent nuclear fuel assembly using simulation codes such as ABAQUS. For Dry Storage Cask System, accident scenarios involving structural behavior, such as degradation and fracture, and experimental and structural accident analyses were performed for storage cask drop and aircraft collision accidents. To evaluate the safety of storage container drop accidents, an empirical test on the container was conducted and the simulation was conducted using the limited element analysis software. Among the accident scenarios for spent fuel storage facilities, aircraft and missile collisions, fires, and explosions are representative accidents that can be caused by malicious external threats. In terms of physical protection, it is necessary to analyze various accident scenarios that may occur due to malicious external threats. Additionally, through the analysis of design basis threats and the protection level of nuclear facilities, it is necessary to derive the probability of aircraft and missile collision and the threat success probability of fire and explosion, and to perform protection integrity evaluation studies, such as for the walls and structures, for spent fuel storage facilities considering safety evaluation methods when a terrorist attack occurs with the derived probability.
산화적 스트레스는 세포 및 조직 손상을 통해 피부의 탄력 및 보습 기능 저하, 피부 노화 촉진 을 비롯한 다양한 피부질환을 일으킨다. 본 연구의 목적은 인간 피부각질세포 (HaCaT keratinocyte)에서 산화적 스트레스에 대한 붉은 토끼풀 추출물의 효능을 검토하여, 피부에 효과적으로 사용할 수 있는 기능 성 소재로서의 활용 여부를 확인하고자 하였다. 본 연구에서는 붉은 토끼풀 추출물이 인간 피부각질세포에 서 산화적 스트레스에 따른 세포사를 억제시키는 것을 확인하여, 이를 조절하는 보호기전을 규명하였다. 이는 붉은 토끼풀 추출물이 Caspase-3 비활성, 세포사 촉진단백질 Bax 발현 억제, 세포생존 촉진단백질 Bcl-2 발현 증가 및 MAPK 신호전달계 단백질의 인산화 억제를 통해 H2O2에 의해 유도된 산화적 스트레 스를 보호할 수 있다는 것을 확인하였다. 따라서 붉은 토끼풀 추출물은 피부의 산화적 손상을 감소시키는 유용한 소재로 평가되며, 이는 피부보호 및 미용을 위한 다양한 제품 및 산업에 활용 가능성이 높은 것으로 판단된다.
This study aimed to investigate the protective effect of enzymatically modified stevia (EMS) on C2C12 cell-based model of dexamethasone (DEX)-induced muscle atrophy to provide baseline data for utilizing EMS in functional health products. C2C12 cells with DEX-induced muscle atrophy were treated with EMS (10, 50, and 100 μg/mL) for 24 h. C2C12 cells were treated with EMS and DEX to test their effects on cell viability and myotube formation (myotube diameter and fusion index), and analyze the expression of muscle strengthening or degrading protein markers. Schisandra chinensis Extract, a common functional ingredient, was used as a positive control. EMS did not show any cytotoxic effect at all treatment concentrations. Moreover, it exerted protective effects on C2C12 cell-based model of DEX-induced muscle atrophy at all concentrations. In addition, the positive effect of EMS on myotube formation was confirmed based on the measurement and comparison of the fusion index and myotube diameter when compared with myotubes treated with DEX alone. EMS treatment reduced the expression of muscle cell degradation-related proteins Fbx32 and MuRF1, and increased the expression of muscle strengthening and synthesis related proteins SIRT1 and p- Akt/Akt. Thus, EMS is a potential ingredient for developing functional health foods and should be further evaluated in preclinical models.
The Fukushima accident in 2011 revealed some major flaws in traditional nuclear fuel materials under accidental conditions. Thus, the focus of research has shifted toward “accident tolerant fuel” (ATF). The aim of this approach is to develop fuel material solutions that lead to improved reactor safety. The application of protective coatings on the surface of nuclear fuel cladding has been proposed as a near-term solution within the ATF framework. Many coating materials are being developed and evaluated. In this article, an overview of different zirconium-based alloys currently in use in the nuclear industry is provided, and their performances in normal and accidental conditions are discussed. Coating materials proposed by different institutions and organizations, their performances under different conditions simulating nuclear reactor environments are reviewed. The strengths and weaknesses of these coatings are highlighted, and the challenges addressed by different studies are summarized, providing a basis for future research. Finally, technologies and methods used to synthesize thin-film coatings are outlined.
This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.
리튬 금속 기반 전극의 높은 용량에도 불구하고, 제어가 어려운 덴드라이트 성장은 낮은 쿨롱 효율, 안전 문제를 야기해, 리튬금속 배터리의 상용화를 제한한다. 본 연구에서는 압전 복합체인 BaTiO3/PVDF (BTO@PVDF) 기반 보호층을 리튬금속에 코팅, 덴드라이트에 의한 부피팽창으로 발생한 변형을 분극을 이용하여, 리튬 금속 전극의 안정성 및 성능을 향상 하고자 한다. 이를 통해, 균일한 리튬이온의 증착이 가능해졌으며, BTO@PVDF 전극은 100 사이클 동안 약 98.1% 이상의 쿨 롱 효율을 나타내었다. 또한, CV를 통해 향상된 리튬이온의 확산계수(DLi+) 증가를 보였으며, 본 연구에서 제시된 전략은 리 튬 금속 전극의 성능 향상에 새로운 길을 나타내준다.
노년기로의 진입을 앞두고 있는 예비노인세대는 중년기에서 노년기의 전환과정에 있는 연령집단으로 개인과 가족의 문제, 급변하는 사회구조 및 환경과의 상호작용 과정에서 겪게 되는 죽음불안의 영향으로 삶의 희 망에 위협을 받을 가능성이 매우 높다. 그동안 영성과 삶의 의미는 의미 있고 가치 있는 삶을 영위하는데 있어서 삶에 대한 불안의 기초가 되는 죽음불안으로부터 예비노인세대를 보호해주는 주요요인으로 밝혀져 왔 다. 이에 본 연구에서는 2003년 일본어로 출간된 후 영어, 독일어, 한국 어로 번역되어 전 세계인들에게 책으로부터 선구자로부터 삶과 죽음을 둘러싼 다양한 만남을 통해 영성과 삶의 의미에 대한 깊은 성찰을 가능 하게 한 『잘 살고 잘 웃고 좋은 죽음과 만나다』를 중심으로 분석하였다. 텍스트를 분석한 결과, 영성과 삶의 의미는 예비노인세대의 삶의 희망을 위협하는 죽음불안에 대한 보호요인으로 작용할 가능성이 매우 높은 것으 로 나타났다. 이러한 결과를 바탕으로 예비노인세대의 영성과 삶의 의미를 강화할 수 있는 방안을 논의하였다.
Subunit vaccines are being developed as a potential therapy for preventing microbial pathogen infection. In this study, the immunogenicity of recombinant Brucella (B.) abortus Fe/Mn superoxide dismutase (rFe/Mn SOD) protein as a subunit vaccine against B. abortus was investigated in BALB/c mice model. Brucella Fe/Mn SOD gene was cloned into a pcold-TF DNA vector. The bacterial recombinant protein was expressed using the Escherichia coli DH5α strain with a size of 82.50 kDa. The western blotting assay showed that rFe/Mn SOD reacted with Brucella-positive serum, indicating the potential immunoreactivity of this recombinant protein. After the second and third vaccinations, the peripheral CD4+ T cell population was increased significantly in the rFe/Mn SOD-immunized mice group compared to the PBS control group. Moreover, immunization of this recombinant protein increased the CD4+ T cell population from the first vaccination to the third vaccination. Meanwhile, the CD8+ T cells were slightly enhanced after the second vaccination compared to the first vaccination and compared to control groups. Fourteen days after the bacterial infection, the splenomegaly and the number of bacteria in the spleen were evaluated. The result showed that both rFe/Mn SOD and positive control RB51 decreased the bacterial replication in the spleen and the splenomegaly compared to control groups. Altogether, these results suggested that rFe/Mn SOD could induce host immunity against B. abortus infection.
Methylglyoxal is a highly reactive precursor which forms advanced glycation end products (AGEs). AGEs and methylglyoxal are known to induce various diseases such as diabetes, vascular disorders, Diabetes Mellitus (DM), and neuronal disorders. Juglans regia L is an important food commonly used worldwide, having nutritious components, including phenolic compounds. Since ancient times, Juglans regia L have been differently applied by various countries for health and in diverse diseases, including arthritis, asthma, skin disorders, cancer, and diabetes mellitus. However, the effect of diabetes-induced renal damage against AGEs remains unclear. This study evaluates the anti-glycation and renal protective effects of ethanol extract of Juglans regia L against methylglyoxal-induced renal tubular epithelial cell death. Exposure to methylglyoxal resulted in reduced cell viability in NRK-52E cells, but co-treatment with Juglans regia L extracts significantly increased the cell viability. In addition, we examined the anti-glycation effect of Juglans regia L extracts. Compared to the positive control aminoguanidine and Alagebrium, treatment with Juglans regia L extracts significantly inhibited the formation of AGEs, collagen cross-linking, and breaking collagen cross-linking. Taken together, our results indicate that Juglans regia L is a potential therapeutic agent for regulating diabetic complications by exerting anti-glycation and renal protective activities.
피부는 인체를 구성하는 가장 큰 장기로 생체 내부를 보호한다. 자외선은 피부에 광노화와 산화 적 손상을 비롯한 다양한 염증반응을 일으킨다. 본 연구의 목적은 섬유아세포에서 UVB를 조사하여 Saponaria 추출물의 보호 효과를 조사하는 것이다. 본 연구에서는 UVB에 의한 세포독성과 산화적 세포사 멸, NO 및 PGE2 생성에 대한 보호활성을 나타내는 Saponaria의 유효성을 평가하였다. HS68 세포를 UVB(120mJ/cm2)에 조사하고 100, 200, 400 μg/mL의 다양한 농도로 Saponaria 추출물로 24시간 동안 처리하였으며, 자외선 B에 의해 생성된 세포 내 활성 산소 종(ROS)은 DCF-DA 염색 후 분광 형광계를 사용하여 검출하였다. 또한 지질 과산화는 배양 배지로 분비되는 8-이소프로스탄의 수준을 측정하여 분석 하였다. 그 결과 Saponaria 추출물이 UVB에 의한 세포독성을 효과적으로 억제하였다. 산화적 세포 손상은 UVB로 유도된 HS68 섬유아세포에서 PGE2를 매개하였고, 이는 사포나리아 추출물 처리에 의하여 유의하 게 억제되었다. 또한, 이들 추출물의 보호 효과는 농도 의존적으로 세포내 ROS 생성 및 지질 과산화 억제 에 의해 매개되는 것으로 평가되었다. 이러한 결과는 Saponaria 추출물이 자외선 B에 의한 산화적 스트레 스로 매개한 피부 손상을 억제하여 세포 보호효과를 나타내므로 항노화 기능성 소재로 활용될 수 있을 것 으로 사료된다.
Aralia elata, Chaenomeles sinensis fruit, and Glycyrrhizae radix have been widely used as oriental medicinal plants in Korea, China and Japan and found to possess anti-oxidative and anti-inflammatory activities. The current study was conducted to investigate the neuroprotective effect of an ethanol extract of a mixture of A. elata, C. sinensis fruit, and Glycyrrhizae radix (ACG) against ischemia-induced brain injury in rats and excitotoxic and oxidative neuronal death in primarily cultured rat cortical neurons. Transient focal cerebral ischemia was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion (MCAO/R) in rats. Oral administration of ACG (10, 25, and 50 mg/kg) 30 min before MCAO, after 1 h of MCAO, and after 1 h of reperfusion reduced MCAO/R-induced brain infarct and edema formation. ACG also inhibited development of behavioral disabilities in MCAO/R-treated rats. Exposure of cultured cortical neurons to 500 μM glutamate for 12 h resulted in neuronal cell death. ACG (1, 10, and 50 μg/mL) inhibited glutamate-induced neuronal death. Furthermore, ACG inhibited 100 μM hydrogen peroxide (H2O2)- and hypoxia-induced neuronal death. These results suggest that the neuroprotective effect of ACG against ischemia-induced brain damage might be associated with its anti-excitotoxic and anti-oxidative activity and that ACG may have a therapeutic role for prevention of neurodegeneration in stroke.