This study was conducted to find a way to improve quality by observing changes in quality and microbial communities according to whether corn silage was treated with additives and the storage period, and to utilize them as basic research results. The experimental design was performed by 2˟4 factor desigh, and the untreated (CON), and the additive inoculated (ADD) silage were stored and fermented for 30 (TH), 60 (ST), 90 (NT), and 120 (OHT) days, with each condition repeated 3 times. There was no change in the nutrient content of corn silage according to additive treatment and storage period (p>0.05). However, the change in DM and the increase in the relative proportions of lactic acid content and Lactobacillales according to the storage period (p<0.05) indicate that continuous fermentation progressed until OHT days of fermentation. Enterobacterales (33.0%), Flavobacteriales (14.4%), Sphingobacteriales (12.7%), Burkholderiales (9.28%) and Pseudomonadales (6.18%) dominated before fermentation of corn silage, but after fermentation, the diversity of microorganisms decreased sharply due to the dominance of Lactobacillales (69.4%) and Bacillales (11.5%), Eubacteriales (7.59%). Therefore, silage maintained good fermentation quality with or without microbial additives throughout all fermentation periods, but considering the persistence of fermentation even in long-term storage and the aerobic stability, it would be advantageous to use microbial additives.
Understanding changes in fermentation characteristics and microbial populations of forage silage during ensiling is of interest for improving the nutrient value of the feed for ruminants. This study was conducted to investigate the changes in fermentation characteristics and bacterial communities of whole crop rice (WCR) silage during the ensiling period. The chemical compositions, pH, organic acids and bacterial communities were evaluated at 0, 3, 6, and 12 months after ensiling. The bacterial communities were classified at both the genus and species levels. The dry matter content of WCR silage decreased with the length of storage (p<0.05), but there was no significant difference in crude protein and NDF contents. Following fermentation, the pH level of WCR silage was lower than the initial level. The lactic acid content remained at high levels for 3 to 6 months after ensiling, followed by a sharp decline at 12 months (p<0.05). Before fermentation, the WCR was dominated by Weissella (30.8%) and Pantoea (20.2%). Growth of Lactiplantibacillus plantarum (31.4%) was observed at 3 months after ensiling. At 6 months, there was a decrease in Lactiplantibacillus plantarum (10.2%) and an increase in Levilactobacillus brevis (12.8%), resulting in increased bacteria diversity until that period. The WCR silage was dominated by Lentilactobacillus buchneri (71.2%) and Lacticaseibacillus casei (27.0%) with a sharp reduction in diversity at 12 months. Overall, the WCR silage maintained satisfactory fermentation quality over a 12-month ensiling period. Furthermore, the fermentation characteristics of silage were found to be correlated to bacterial microbiome.
본 연구는 수분함량과 미생물 첨가제가 알팔파 사일리지의 발효특성과 사료가치에 미치는 영향을 알아보기 위해 수행되었다. 알팔파는 개화 10% 시기에서 수확되었으며 수분 함량(M60, M50, M40 및 M30)이 60, 50, 40 및 30%일 때 각각 이용하였다. 1500g을 샘플링한 후, 증류수 10mL을 첨가한 미첨가구(NAD)와 Lactococcus lactis 와 Pediococcus pentosaceus의 혼합물을 증류수(0.1g/10mL)에 1.5 x 1010cfu/g 농도로 희석한 후 접종한 미생물 균주 첨가구(ADD)를 3개월 및 6개월 발효하였다. 수분 및 미생물 첨가제에 따른 연평균 알팔파의 조단백, 중성세제 불용성 섬유 및 산성세제 불용성 섬유에서 차이가 없었다(p>0.05). 모든 발효기간에서 pH는 ADD의 M40에서 가장 낮았다(p<0.05). NAD 처리구에서는 젖산이 M50에서 가장 높았고(p<0.05), ADD 처리군에서는 M40 시험구에서 젖산이 가장 높았다(p<0.05). NAD와 ADD의 M60은 젖산 함량이 다른 수분 함량들에 비해 가장 낮으며(p<0.05) 낙산이 유일하게 검출되었다. 미생물군집의 상대적 풍부도는 ADD 처리구의 M40과 M50에서 Homo LAB (Enterococcus, Lactiplantibacillus, Lacticaseibacillus, Lactococcus, Pediococcus)의 비율이 가장 높았고, Clostridium은 M60에서 가장 높았다.
본 연구는 논과 밭에서 재배한 18개 사일리지용 옥수수 품종들 의 생육특성, 수량성 및 사료 가치를 비교 분석하기 위하여 수행하 였다. 논과 밭에서 출사일수는 조숙종인 신황옥이 78일로 가장 짧 았고, 강다옥이 92일로 가장 길었다. 그리고 논과 밭의 출사 일수 차이는 조숙종(6일)보다 중 ․ 만생종(10일)에서 더 크게 차이가 발생 하는 것을 확인하였다. 간장은 논에서 재배한 옥수수가 밭보다 5~10% 감소하였지만, 착수고율은 10~15% 증가되는 경향을 보여 주었다. 그러나 도복과 후기녹체성은 논과 밭에서의 큰 차이를 보이 지 않았다. 사일리지 사료가치를 증진시키는 옥수수의 암이삭 비율 은 신황옥이 논과 밭에서 55.5%, 47.8%로 가장 높았고, 대부분 품종들은 밭보다 논에서 10~30% 감소하는 것을 확인하였다. 또한 이삭길이도 10~25% 감소하였다. 생초수량은 다청옥이 밭에서 65,750 kg/ha, 논에서 33,880 kg/ha로 최고 수량을 보였다. 생초수 량과 유사하게 건물수량도 다청옥이 밭에서 26,910 kg/ha, 논에 서 21,670 kg/ha로, TDN수량은 밭에서 18,040 kg/ha, 논에서 14,390 kg/ha로 최고 수량을 보여주었다. 사일리지용 옥수수의 사 료 가치를 평가하기 위하여 조단백질, 전분을 종실에서 분석한 결 과 논과 밭에서 재배한 품종간의 차이는 보이지 않았다. 그리고 잎과 줄기, 종실을 이용하여 ADF와 NDF 함량을 분석한 결과 잎 과 줄기는 밭에서는 P3394, P1543 같은 수입종이, 논에서 재배할 때는 신광옥, 다안옥 같은 국산품종이 낮을 함량을 가지고 있었다. 또한 종실에서는 밭보다 논에서 ADF와 NDF 함량이 일부 품종에 서 감소하였지만, 대부분 품종에서는 큰 차이를 보이지 않았다. 따라서 논과 밭에서 재배한 옥수수 품종들의 사료 가치는 큰 차이 를 보이지 않으므로, 배수 관리 등을 통해 생육을 정상적으로 재배 한다면 논에서의 옥수수 수량성을 확보 할 수 있다고 판단된다
The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 x 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 x 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 x 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.
This experiment was conducted to evaluate the growth characteristics and productivity of silage corn varieties developed in Korea. Corn cultivation was carried out using the experimental field in the Pyeongchang campus of Seoul National University (550 m above sea level). There have 10 domestic cultivars (Gwangpyeongok, Dacheongok, Yanganok, Jangdaok, Cheongdaok, Daanok, Sinhwangok, Sinhwangok Ⅱ, Pyeonggangok, and Hwangdaok) with one imported cultivar (P1543) which tested as a control, and randomized block design with three replications. Among the 100-grains weight of the seeds, Dacheongok was the heaviest, and the germination rate for each variety was 74.6% on average, while that of Daanok and Sinhwangok were over 90%. Sinhwangok was the fastest in tasseling and silking date. The number of days required to be silking date was as slow as 85 days in Dacheongok, Cheongdaok and Pyeonggangok, and as fast as 80 days or less in Sinhwangok, Sinhwangok Ⅱ and Hwangdaok. The plant height of P1543 was the highest as 344cm, and Hwangdaok and Daanok were short. In terms of the ratio of ears, Daanok had the highest rate of 60.18%, and Jangdaok and Dacheongok had the lowest. There was no significant difference in dry matter content in stover, but P1543 was generally higher in ear and total dry matter content. The dry matter yield was highest in P1543, and the yield of TDN was significantly higher in P1543 and Yanganok. There was a significant difference in the crude protein content of ears and the dry digestibility of stems (p<0.05), while there was no significant difference in the content of each part or element. Combining the above results, Yanganok was the highest in terms of yield, and Dacheongok, Sinhwangok and Pyeonggangok were also recommended for domestically grown corn varieties in the mountainous regions of Gangwon-do.
The present study was conducted to examine the effect of soybean silage as a crude protein supplement for corn silage in the diet of Hanwoo steers. The first experiment was conducted to evaluate the effect of replacing corn silage with soybean silage at different levels on rumen fermentation characteristics in vitro. Commercially-purchased corn silage was replaced with 0, 4, 8, or 12% of soybean silage. Half gram of the substrate was added to 50 mL of buffer and rumen fluid from Hanwoo cows, and then incubated at 39°C for 0, 3, 6, 12, 24, and 48 h. At 24 h, the pH of the control (corn silage only) was lower (p<0.05) than that of soybeansupplemented silages, and the pH numerically increased along with increasing proportions of soybean silage. Other rumen parameters, including gas production, ammonia nitrogen, and total volatile fatty acids, were variable. However, they tended to increase with increasing proportions of soybean silage. In the second experiment, 60 Hanwoo steers were allocated to one of three dietary treatments, namely, CON (concentrate with Italian ryegrass), CS (concentrate with corn silage), CS4% (concentrate with corn silage and 4% of soybean silage). Animals were offered experimental diets for 110 days during the growing period and then finished with typified beef diets that were commercially available to evaluate the effect of soybean silage on animal performance and meat quality. With the soybean silage, the weight gain and feed efficiency of the animal were more significant than those of the other treatments during the growing period (p<0.05). However, the dietary treatments had little effect on meat quality except for meat color. In conclusion, corn silage mixed with soybean silage even at a lower level provided a greater ruminal environment and animal performances, particularly with increased carcass weight and feed efficiency during growing period.
The planting date of corn for silage has been delayed because of spring drought and double cropping system in Korea. This experiment was conducted to evaluate agronomic characteristics, forage production and feed value of corn at April and May in 2019. Experimental design was a split-plot with three replications. Planting dates (12 April and 10 May) were designated to the main plot, and corn hybrids (‘P0928’, ‘P1543’ and ‘P2088’) to the subplot. The silking days of the early planting date (12 April) was 79 days and that of the late planting date (10 May) was 66 days (p<0.0001), however, there were no significant differences among the corn hybrids. Ear height of the late planting date was higher than that of the early planting (p<0.05), while there were no significant differences in plant height of corn. Insect resistance at the early planting was lower than that of late planting (p<0.05), however, lodging resistance was no significant difference at planting date. The rice black streaked virus (RBSDV) infection of early planting was 3.7% and that of late planting was 0.3% (p<0.001). Dry matter (DM) contents of stover, ear and whole plant had significant difference at planting date (p<0.05). And differences in ear percentages were observed among the corn hybrids (p<0.01). And ear percentages of early maturing corn (‘P0928’) was higher than for other hybrids. Ear percentage at the early planting date was higher than that at the late planting date (p<0.01). DM and total digestible nutrients (TDN) yields had significant difference at planting date, however, there were no significant differences among the corn hybrids. DM and TDN yields at the late planting (21,678 kg/ha and 14,878 kg/ha) were higher than those of the early planting (13,732 kg/ha and 9,830 kg/ha). Crude protein content at the early planting date was higher than that of the late planting. Acid detergent fiber content of the late planting was lower than that of the early planting date (p<0.01), while there were no significant neutral detergent fiber content difference among the corn tested. Calculated net energy for lactation (NEL) and TDN at the early planting were higher than those of at the late planting (p<0.01). Results of this our study indicate that the late planting date (May) is better than early planting date (April) in forage yield and feed value of corn. Therefore, the delay of planting date by May was more suitable for use in cropping system.
The present study was aimed to estimate the effect of ensiling period and bacterial inoculants on chemical compositions and fermentation characteristics on rye silage harvested at delayed stage. Rye (Secale cereale L.) was harvested after 20 days of heading stage (29.4% dry matter, DM). The harvested rye forage was applied with different inoculants following: applications of distilled water (CON), Lactobacillus brevis (LBB), Leuconostoc holzapfelii (LCH), or mixture of LBB and LCH at 1:1 ratio (MIX). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 50 (E50D) and 100 (E100D) days in triplicates. The E50D silages had higher in vitro digestibilities of DM (IVDMD, p<0.001) and neutral detergent fiber (IVNDFD, p=0.013), and lactate (p=0.009), and acetate (p=0.011) than those of E100D, but lower pH, lactic acid bacteria (LAB), and yeast. By inoculant application, LCH had highest IVDMD and IVNDFD (p<0.05), while MIX had highest lactate and lowest pH (p<0.05). The CON and LCH in E50D had highest LAB and yeast (p<0.05), whereas LBB in E100D had lowest (p<0.05). Therefore, this study concluded that LCH application improved the nutrient digesbility (IVDMD and IVNDFD) of lignified rye silage, and longer ensiling period for 100 days enhanced the fermentation characteristics of silage compared to ensiling for 50 days.
This study was conducted to estimate the effect of different cutting lengths on fermentation characteristics and aerobic stability of whole crop rice (WCR) silage. The WCR was harvested at the yellow ripe stage (43.7%, DM), and then cut at 5 (R05), 10 (R10), and 20 cm (R20) of the theoretical length of cut with no cut WCR (R60). Each forage was ensiled into 20 L mini bucket silo (5 kg) for 150 days in quadruplicates. The cutting lengths were not affected the chemical compositions of WCR silage (p > 0.05). The pH (p < 0.001) and concentration of ammonia-N (p = 0.022) in WCR silage were increased linearly with the increase of cutting length. The concentration of lactate had quadratic effect (p = 0.007), which was highest in R20 silage (p < 0.05). The concentration of acetate was increased linearly (p = 0.014), but the concentration of butyrate was decreased linearly (p = 0.033). The lactic acid bacteria count was decreased linearly (p = 0.017), and yeast count had quadratic effect (p = 0.009), which was the highest in R20 silage (p < 0.05). Aerobic stability had strong quadratic effect (p < 0.001), which was the highest in R20 silage (p < 0.05). In conclusion, R60 silage had highest pH by a linear increase of ammonia-N concentration and led to low aerobic stability. While R20 silage had the lowest pH by high lactate concentration and led to high aerobic stability.
This study was carried out to investigate the growth characteristics, yield and feed value of Sorghum×Sudangrass hybrid for silage according to the drainage depths in the paddy field of lowland. The experimental design was arranged in a randomized block design with four treatments and three replication. The drainage depths of four treatments were 0cm, 20cm, 40cm and 60cm, respectively. Plant length, leaf length and leaf number were not significantly different, but leaf width increased as the higher the drainage depth(p<0.05). The number of dead leaf was higher in the order of 60cm > 0cm ≥ 40cm ≥ 20cm treatment(p<0.05). Green degree was higher in the order of 20cm > 40cm > 0cm > 60cm treatment(p<0.05). Stem diameter and stem hardness increased significantly as drainage depth increased from 0cm to 60cm(p<0.05). Also, fresh yield, dry matter yield and TDN yield increased as the higher the drainage depth(p<0.05). Crude protein and TDN content were the highest in 40cm treatment(p<0.05). Crude ash was higher in the order of 20cm > 40cm > 0cm > 60cm treatment(p<0.05). ADF and NDF content were the highest in 0cm treatment(p<0.05). Total mineral content was higher in the order of 20cm > 0cm > 40cm > 60cm(p<0.05). Free sugar content(fructose, glucose and sucrose) was the highest in 0cm treatment(p<0.05). Total amino acid(EAA+NEAA) was higher in 40cm than the other treatments(p<0.05). There is a difference in the content of ingredients(crude protein, TDN, mineral, free sugar and amino acid) according to the treatments. But considering dry matter yield and TDN yield, Sorghum×Sudangrass hybrid cultivation is advantageous to set the drainage depth of about 60cm in the paddy field of lowland.
This study was conducted to estimate the effect of home or hetero fermentative lactic acid bacteria(LAB) on chemical composition, fermentation quality, and aerobic stability of rye silage. Rye forage was harvested at dough stage(28.9% of dry matter), chopped to 3-5 cm length, and divided into 4 piles for different inoculations as treatment, following 1) No additives(CON); 2) Lactobacillus plantarum at rate of 1.5 x 105 cfu/g of fresh forage(LP); 3) L. buchneri at rate of 1.2 x 105 cfu/g of fresh forage(LB); and 4) Mixture of LP and LB at 1:1 ratio(MIX). Rye silage was ensiled into 20 L bucket silo in quadruplicate for 0, 1, 4, 7, and 100 day periods. After 100 days of ensiling, the silage treated with LB had lower acid detergent fiber content(p<0.05), but higher in vitro dry matter digestibility(p<0.05). The LB and MIX reduced (p<0.05) pH more rapidly than CON and LP across the ensiling days, but had no difference on 100 days. Silage treated LP had lowest(p<0.05) acetic acid, but highest(p<0.05) propionic acid. In contrast, LB treated silage had highest(p<0.05) acetic acid, but lowest(p<0.05) propionic acid with the absence of butyric acid. On microbial count, LP treated silage had lowest(p<0.05) LAB, yeast, and aerobic stability, whereas LB and MIX treated silages had highest(p<0.05). Mold was not detected across all silages. Therefore, it could be concluded that heterofermentative LAB solely or combo with homofermentative LAB might improve in vitro dry matter digestibility, fermentation characteristics, and aerobic stability of rye silage harvested at dough stage.
본 연구는 팽이버섯 수확 후 배지를 첨가하여 호밀 사일리지 제조 시 팽이버섯 수확 후 배지를 에너 지원으로서 사용하기 위하여 in vitro 반추위 발효실험이 수행되었다. 공시 사일리지는 출수기의 호밀 에 팽이버섯 수확 후 배지 첨가비율(0%, 20%, 40%, 60%)에 따라 제조하여 6주일간 발효시켰다. In vitro 배양액 제조를 위한 반추위액은 농후사료와 볏짚을 40:60의 비율로 급여한 반추위 cannula가 시 술된 Holstein 수소 2두로 부터 채취하였다. In vitro 실험은 발효시간대를 3, 6, 9, 12, 24 및 48시간 으로 설정하고, 각 처리구별로 3반복으로 발효특성과 건물소화율을 측정하였다. In vitro 배양액의 pH 는 발효시간이 길어짐에 따라 낮아지는 경향이었으며, 48시간 경과 시에는 버섯수확 후 배지 60% 첨가 구가 타 처리구에 비해 유의적(p<0.05)으로 낮았다. 미생물 성장율은 배양시간이 경과함에 따라 증가 하는 경향이었으며, 발효 48시간 경과 시에는 버섯수확 후 배지 20% 첨가구가 타 처리구에 비해 유의 적으로(p<0.05) 높았다. Gas발생량은 48시간 발효 시에 대조구가 타 처리구에 비해 유의적(p<0.05)으 로 높았다. 건물소화율은 버섯수확 후 배지의 첨가비율이 높을수록 높았는데, 발효 24시간 및 48시간에 는 R-60구가 처리구 중에서 가장 높았으며(p<0.05), 대조구에서는 전 발효기간 동안 건물소화율이 현 저히 낮은(p<0.05) 상태에 있었다. In vitro 반추위내 발효실험의 결과와 버섯수확 후 배지의 활용성을 고려할 때, 호밀사일리지 제조 시 팽이버섯 수확 후 배지 첨가비율을 원물기준으로 60%수준이 가장 긍 정적인 것으로 나타났다. 향후 대사시험이나 사양시험을 통하여 가축사료로써의 최적 대체 비율을 규명 해야 할 것으로 사료되는 바다.
This study was conducted to evaluate the possibility of expanding the usage of whole crop silage from beef cattle and dairy cow to hogs and chickens. For this purpose, a crushing device was developed to crush whole crop silage. The crushed silage was sealed, and analyzed for its feed value. The silage varieties used for the experiment included Saessal barley and Geumgang wheat. Whole crop barley and wheat were crushed in the crushing system as a whole without separating stems, leaves, grains, etc.. When the crushed whole crop silages (CWCS) were analyzed, full grain, grains above 10 mm in size, grains 5~10 mm in size, and grains below 5 mm in size accounted for, 20%, 4%, 27%, and 49 %, respectively. In order to facilitate the fermentation of CWCS, inoculated some fermenter into each CWCS sample (barley or wheat). As control, another set of sample was not inoculated. Crude protein (CP), ether extract (EE), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, cellulose content, total digestible nutrient (TDN), and relative feed value (RFV) of fermenter-inoculated Saessal barley were 2.45 %, 1.61%, 8.95%, 16.94%, 9.52%, 1.01%, 8.51%, 81.38%, and 447.5%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV in the other sample of Saessal barley without inoculation of fermenter were 2.57%, 1.62%, 9.61%, 18.25%, 10.13%, 1.10%, 9.04%, 80.90%, and 412.9%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV of fermenter-inoculated Geumgang wheat sample were 2.43%, 1.27%, 10.99%, 19.49%, 11.23%, 1.46%, 9.77%, 80.03%, and 382.6%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, RFV of the other set sample of Geumgang wheat sample without the inoculation of fermenter were 2.28%, 1.44%, 10.08%, 18.02%, 10.44%, 1.26%, 9.18%, 80.65%, and 416.9%, respectively. The TDN and RFV content in the fermenter-inoculated Saessal barley were 81.38% and 447.5%, respectively, while the one in the fermenter-inoculated Geumgang wheat were 80.03% and 382.6% respectively. When the feed value of whole crop barley and wheat silage without crushing process was compared to the feed value of whole crop barley and wheat silage made from crushing system, the latter appeared to be higher than the former. This could be due to the process of sealing the crushed silage which might have minimized air content between samples and shortened the golden period of fermentation. In conclusion, these results indicate that a crushing process might be needed to facilitate fermentation and improve the quality of silage when making whole crop silage.
The study was conducted to evaluate the effects of microbial culture supplements on ruminal fermentation and fermentative quality of Italian ryegrass silage (IRGS) both in vitro and in situ. Three species of microbes (Lactobacillus casei (LC), Bacillus subtilis (BS), and Saccharomyces cerevisiae (SC)) were used in this study. They were applied to IRGS at 30 days after silage manufacture. Various items were measured using in vitro and in situ incubation technique after each microbial supplement was inoculated into IRGS at 0.5×104 CFU/g. In the first experiment, in vitro ruminal fermentation characteristics of IRGS were evaluated at 0, 12, 24, 48, and 72 hours after microbes were inoculated into IRGS. In the second experiment, in situ fermentation characteristics were investigated at 0, 1, 3, and 5 days after the inoculation of each microbial supplement. In vitro ruminal NH3-N content was significantly (p<0.05) increased in LC-, BS-, and SC-IRGS at 12 hrs post incubation compared to that in control IRGS. In vitro ruminal total VFA concentration and dry matter digestibility (DMD) of IRGS were not significantly difference among LC-, BS-, and SC-IRGS, although they were numerically increased in LC-IRGS than those of the other IRGS. In addition, this study evaluated the fermentation characteristics and in situ DMD of IRGS with the lapse of incubation time up to 5 days. Throughout the incubation times from 1 day to 5 days, the pH value was significantly (p<0.05) lower in BS-, LC-, and SC-IRGS than that in control IRGS. Lactate was significantly (p<0.05) higher, and significantly (p<0.05) butyrate was lower in LC-IRGS than that in other treatments at 0 day. It was higher (p<0.05) in control IRGS than that of BS-, LC-, and SC-IRGS at 1-5 days. In situ DMD tended to increase in BS-, LC-, and SC-IRGS compared to that in control IRGS. Especially, DMD was higher in SC-IRGS than that in other treatments at 0 day. It tended to be higher in LC-IRGS at all incubation time. Taken together, these results suggest that it might be useful to select a microorganism by considering the feeding time of IRGS to ruminants because organic acids and DMD of IRGS were affected by the incubation time of each microorganism with IRG silage, especially for L. casei decreased the content of acetate and butyrate in IRGS.
본 실험은 논 토양에서 사일리지용 수수 × 수수 교잡종 재배시 화학비료와 발효 돈분 액비 혼용 시용이 생육특성 및 영양성분에 미치는 영향을 조사하고자 실시하였다. 실 험설계는 화학비료 100% 처리구 (C), 화학비료 70% + 돈분 액비 30% 처리구 (T1), 화학비료 50% + 돈분액비 50% 처 리구 (T2), 화학비료 30% + 돈분액비 70% 처리구 (T3) 그리 고 돈분액비 100% 처리구 (T4)로 한, 5처리 3반복 난괴법 으로 배치하였다. 이때 돈분 액비 시용은 질소량만을 기준 으로 하였다 (150 kg/ha). 초장, 엽장, 엽폭 그리고 경의 굵 기는 T4구가 유의적으로 작게 나타났다 (p<0.05). 경의 경 도는 돈분액비 시용 비율 낮고 화학비료 시용 비율이 높을 수록 유의적으로 증가하였다 (p<0.05). 생초수량은 T2구가 높았던 반면 T3구가 낮게 나타났다 (p<0.05). 그러나 건물 수량 및 TDN 수량은 처리구들 간에 유의적인 차이를 보이 지 않았다. 조단백질 함량은 T1구가 다른 구에 비하여 높 게 나타났다 (p<0.05). 조지방 함량은 T1, T2, T3 그리고 T4 처리구들 간에는 유의적인 차이가 없었지만, C구와는 유의적인 차이를 보였다 (p<0.05). NDF와 조섬유 함량은 각각 T3구와 C구에서 높게 나타났다 (p<0.05). 그러나 ADF 함량은 처리구들 사이에 유의적인 차이를 보이지 않았다. 총무기물 함량은 T1 > T2 > T4 > T3 > C 구 순으로 높게 나 타났다 (p<0.05). 유리당 함량은 T1과 C구가 다른 처리구에 비하여 유의적으로 높게 나타났다 (p<0.05). 이상의 결과를 종합해 볼 때, 돈분액비 시용은 화학비료에 비하여 수량성, 영양성분에 크게 떨어지지 않기 때문에 사일지용 수수 × 수수 교잡종 재배시 돈분액비와 화학비료를 혼용 시용 하 거나 돈분액비 만 시용하여도 큰 무리가 없는 것으로 판단된다.