CoSi2 was formed through annealing of atomic layer deposition Co thin films. Co ALD was carried out using bis(N,N'-diisopropylacetamidinato) cobalt (Co(iPr-AMD)2) as a precursor and NH3 as a reactant; this reaction produced a highly conformal Co film with low resistivity (50 μΩcm). To prevent oxygen contamination, ex-situ sputtered Ti and in-situ ALD Ru were used as capping layers, and the silicide formation prepared by rapid thermal annealing (RTA) was used for comparison. Ru ALD was carried out with (Dimethylcyclopendienyl)(Ethylcyclopentadienyl) Ruthenium ((DMPD)(EtCp)Ru) and O2 as a precursor and reactant, respectively; the resulting material has good conformality of as much as 90% in structure of high aspect ratio. X-ray diffraction showed that CoSi2 was in a poly-crystalline state and formed at over 800˚C of annealing temperature for both cases. To investigate the as-deposited and annealed sample with each capping layer, high resolution scanning transmission electron microscopy (STEM) was employed with electron energy loss spectroscopy (EELS). After annealing, in the case of the Ti capping layer, CoSi2 about 40 nm thick was formed while the SiOx interlayer, which is the native oxide, became thinner due to oxygen scavenging property of Ti. Although Si diffusion toward the outside occurred in the Ru capping layer case, and the Ru layer was not as good as the sputtered Ti layer, in terms of the lack of scavenging oxygen, the Ru layer prepared by the ALD process, with high conformality, acted as a capping layer, resulting in the prevention of oxidation and the formation of CoSi2.
The synthesis and consolidation of titanium silicide by electro-discharge-sintering has been investigated. As-received Ti powder was in flaky shape and the mean particle size was , whereas the mean particle size of the pre-milled Si powder with angular shape was . Single pulse of 2.5 to 5.0 kJ/0.34g-elemental Ti and pre-milled Si powder mixture with the composition of Si was applied using capacitor. The solid with phase has been successfully fabricated by the discharge with the input energy more than 2.5kJ in less than Hv values were found to be higher than . The formation of occurred through a fast solid state diffusion reaction.
The synthesis of titanium silicides (, , , and TiSi) by mechanical alloying has been investigated. Rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the last three phases during room-temperature high-energy ball milling of elemental powders. Such reactions appeared to be ignited by mechanical impact in an intimate, fine powder mixture formed after a critical milling period. During the high-energy ball milling, the repeated impact at contact points leads to a local concentration of energy which may ignite a self-propagating reaction. From in-situ thermal analysis, each critical milling period for the formation of , and TiSi was observed to be 22, 35.5 and 53.5 min, respectively. and , however, have not been produced even till the milling period of 360 min due to lack of the homogeneity of the powder mixtures. The formation of titanium silicides by mechanical alloying and the relevant reaction rates appeared to depend upon the critical milling period, the homogeneity of the powder mixtures, and the heat of formation of the products involved.
단결정 Si기판위의 Co/Ti 이중층으로부터 형성된 Co 실리사이드의 에피텍셜 성장기구에 대하여 조사하였다. 실리사이드화 과정중 Ti원자들이 저온상의 CoSi결정구조의 tetrahedral site들을 미리 점유해 있음으로 인하여, CoSi2 결정구조로 바뀌는 과정에서 Si원자들이 나중에 제위치를 차지하기 어렵게 되는 효과 때문이다. 그리고 Ti중간층은 반응의 초기단계에 Co-Ti-O 삼원계 화합물을 형성하는데, 이 화합물은 실리사이드화 과정중 반응 제어층으로 작용하여 에피텍셜 실리사이드 형성에 중요한 역할을 한다. 최종 열처리 층구조 Ti oxide/Co-Ti-Si/epi/Cosi2(100) Si 이었다.
배선 재료나 salicide 트랜지스터에 적용될 것으로 기대되는 Cu 배선과 Co 단일층 및 Co/Ti 이중층을 사용하여 형성된 코발트 실리사이드간의 열적 안정성에 대하여 조사하였다. 400˚C열처리후 Cu3Si 막이 CoSi2층과 Si 기판 사이에 형성되었는데, 이것은 Cu 원자의 확산에 기인한 것이다. 600˚C에서의 열처리 후에 형성된 최종막의 구조는 각각 Cu/CoSi2/Cu3Si/Si과 TiO2/Co-Ti-Si 합금/CoSi2/Cu3Si/Si였으며, 상부에 형성된 TiO2층은 산소 오염에 의한 것으로 밝혀졌다.
(100) Si 기판위에 전자 빔 증착법을 이용하여 90Å두께의 Ti과 120Å두께의 Co를 순차적으로 증착시켰다. 그 후 질소분위기하의 350-900˚C온도구간에서 급속열처리함으로써 (100) Si 기판위의 Co/Ti 이중 박막의 실리사이드화 반응이 일어나게 했으며 이를 XRD, AES, TEM을 이용하여 분석하였다. 500˚C이하의 온도에서는 Co원자들이 Ti층쪽으로 빠르게 확산하여 Si와 반응하기 이전에 Ti원자들과 상호 혼합되어 어떠한 실리사이드도 형성되지 않았다. 500˚C에서 열처리된 시편의 고분해능전자현미경 영상을 통해 Co-Ti 혼합층과 실리콘 기판과의 계면에서 (100)Si 기판과 정합관계를 가지는 CoSi2가 형성되었음을 확인했다. 600˚C열처리에 의해 Co-Ti-Sitka성분 실리사이드가 형성되기 시작하였으며, 형성된 삼성분 실리사이드는 Ti의 out-diffusion에 의해 900˚C 이상의 온도에서는 불안정하였다. Co/Ti이중 박막에 의해 형성된 CoSi2는 실리콘 기판과 평탄한 계면을 가지며 실리콘 기판에 대해 (100)우선성장방위를 가졌다.
실리콘박막의 상부에 고상반응에 의해 형성된 TiSi2 박막의 응집 거동에 미치는 기판 실리콘의 영향을 조사했다. 폴리실리콘과 어몰퍼스실리콘을 증착상태 또는 어닐링한 상태엣 TiSi2를 형성시키고 900˚C열처리에 따른 TiSi2의 면저항값의 변화를 조사하고 XRD, SEM 및 TEM에 의한 실리콘의 조직관찰을 행했다. TiSi2응집은 어몰퍼스실리콘 위의 경우가 더욱 심했다. 폴리실리콘을 어닐링하면 TiSi2의 응집은 억제되며 고온에서 어닐링할수록 그 효과가 현저했다. 이는 폴리실리콘의 입도 변화보다는 증착시 존재하는 결함들이 열처리에 의해 감소된 때문이다. 폴리실리콘의 경우는 어닐링 전후에 상관없이 (110)집합조직인 주상정 조직을 갖고 있다. 어몰퍼스실리콘을 결정화시킨 경우는 (111)집합조직를 갖는 등축정 조직을 나타내었다. 실리콘의 표면에너지가 낮은 (111)면이TiSi2 막의 하부 폴리실리콘에 많이 존재할수록 응집은 촉진된다.
Single-Si 기판과 poly-Si 기판에 각각 Ti을 sputter한 후 RTA 처리하여 안정한 TiSi2를 형성하였다. 그 위에 Si이 1% 첨가된 Al-1% Si을 600nm sputter한 후 후속 열처리로서 400-600˚C 에서 30분간 N2분위기로 furnace어닐링을 실시하였다. 이렇게 준비된 각 시편에 대하여 면저항 측정, Auger분석, SEM 사진으로 Al-1% Si/TiSi2이중층 구조에서 Ti-silicide의 열적 안정성을 살펴 보았고, EDS 분석과 X-ray 회절 peak 분석을 통하여 Al-1% Si 층과 TiSi2층의 반응으로 생긴 석출물의 성분과 상을 조사하였다. 이로 부터 다음과 같은 결과를 얻었다 Single-Si 기관에서 형성한 TiSi2층은 Al-1% Si 층과 550˚C에서 완전히 반응하여 석출물을 형성하였고, poly-Si 기판에서 형성한 TiSi2층은 Al-1% Si 층과 500˚C에서 완전히 반응하여 석출물을 형성하였는데 전반적으로 기판이 poly-Si인 경우가 반응이 더 잘 일어났고, 석출물의 크기도 비교적 컸다. 이는 poly-Si에 존재하는 grain boundary로 인해 poly-Si에서 형성된 Ti-silicide 층이single-Si 기관에서 형성된 Ti-silicide 층보다 불안정하기 때문으로 생각된다. EDS 분석에 의하여 석출물은 Ti, Al, 그리고 Si로 이루어진 3상 화합물이라고 추정되었고, X-ray회절 분석에 의해 석출물은 Ti, Al, 그리고 Si간의 3상 화합물인 Ti7Al5Si12로 확인되었다.
Composite TiSi2.6 target으로 부터 Ti-silicide를 형성시 단결정 Si기판과 다결정 Si내의 dopant의 확산 거동, 그리고 Ti-silicide 박막의 표면 거칠기를 secondary ion mass spectrometry (SIMS), 4-point probe, X-선 회절 분석, 표면 거칠기 측정을 통해 조사하였다. X-선 회절 분석결과 중착된 직후의 중착막은 비정질이었고, 단결정 Si기판에 증착된 막은 800˚C에서 20초간 급속 열처리 시 orthorhombic TiSi2(C54 구조)로 결정화가 이루어졌다. 단결정 Si 기판과 다결정 Si에서 Ti-silicide 충으로의 dopant의내부 확산은 거의 발생하지 않았으며, 주입된 불순물들은 Ti-silicide/Si 계면 근처의 단결정 Si이나 다결정 Si 내부에 존재하고 있었다. 또한 형성된 Ti-silicide 박막의 표면 거칠기는 16-22nm이었다.
Ti-Silicides를 single-Si wafer와 그 위에 oxide를 성장시킨 기판위에 composite target(TiSi2.6)을 sputtering함으로써 증착시켰다. 증착된 비정질 상태의 Ti-silicide는 급속 열처리(RTA)방법으로 600˚C에서 850˚C가지 20초간 처리하였다. RTA온도가 800˚C가 되어서야 비로소 안정한 TiSi2가 형성되었으며, 그 때의 비저항 값은 27~29μΩ-cm로 Ti-metal reactive방법에 의한 TiSi2보다 약간 높은 값으로 드러났다. X-ray로 상천이를 조사한 결과 역시 750˚C가지 C49 TiSi2가 형성되고, 800˚C가 되어서야 안정한 C54 TiSi2로의 상천이가 일어남을 나타내고 있다. 또한 완전히 형성된 Ti-silicide의 조성비는 x-ray photoelectron spectroscopy(XPS)결과에서 Ti : Si이 1 : 2로 드러났으며, 그 동안 reactive 시켰을 때 TiSi2의 단점으로 지적되어 왔던 형성 완료된 TiSi2의 surface roughness는 17±1mm이내로 매우 우수한 값으로 판명되어, device에 대한 응용 가능성을 높이고 있다.