검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 95

        1.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study develops a model to determine the input rate of the chemical for coagulation and flocculation process (i.e. coagulant) at industrial water treatment plant, based on real-world data. To detect outliers among the collected data, a two-phase algorithm with standardization transformation and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied. In addition, both of the missing data and outliers are revised with linear interpolation. To determine the coagulant rate, various kinds of machine learning models are tested as well as linear regression. Among them, the random forest model with min-max scaled data provides the best performance, whose MSE, MAPE, R2 and CVRMSE are 1.136, 0.111, 0.912, and 18.704, respectively. This study demonstrates the practical applicability of machine learning based chemical input decision model, which can lead to a smart management and response systems for clean and safe water treatment plant.
        4,000원
        3.
        2023.11 구독 인증기관·개인회원 무료
        Domestic nuclear power plants can affect the environment if multiple devices are operated on one site and even a trace amount of pollutants that may affect the environment after power generation are simultaneously discharged. Therefore, not only radioactive substances but also ionic substances such as boron should be discharged as minimally as possible. We adopted pilot CDI and SD-ELIX sytem to separating and concenrating of boron containing nulcear power plant discharge water. The boron concentration of the initial inflow water tended to decrease over time. The water quality of concentrated water also reached its peak until the initial 60 minutes, but tended to decrease in line with the decrease in the inflow water concentration. The boron removal rate was in the range of 85 to 99% with respect to the initial boron concentration of 15 to 25 mg/L. On the other hand, performance degradation due to the use of electrochemical modules is also observed, and regeneration through low ion-containing water cleaning effective. We shortened processing time by considering the optimal flow rate conditions and conductivity conditions and converting electrochemical modules into series or parallel.
        4.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to select eggplant cultivars adaptive to the hot temperature period greenhouse climate by water consumption, and growth performance of plants and fruits of different European eggplant cultivars, including ‘Bartok (BA)’, ‘Bowie (BO)’, ‘Black Pearl (BP)’, ‘Ishbilia (I)’, ‘Mabel (M)’, ‘Vestale (VE)’ and ‘Velia (VL)’, in substrate hydroponic cultivation under hot and humid greenhouse conditions. On the 118 DAT, the leaf number and stem dry weight were highest in ‘VL’, followed by ‘M’, and there was no significant difference in leaf dry weight among cultivars. The marketable fruit number per plant was 16.4 for ‘M’, which was higher than other cultivars, and ‘VE’ and ‘VL’ were 8.5 and 8.8, respectively. The weight per fruit was low for ‘M’ at 136 g, and the highest in ‘VE’ and ‘VL’ at 332 and 281 g, respectively. There was no significant difference in fruit production per plant. In this study, ‘M’, which has high water use efficiency and a large number of fruits, and ‘VL’, which required less quantity to water consumption for producing 200 g of fruit and had a high product weight, will have excellent adaptability in the UAE greenhouse condition.
        4,000원
        5.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emergence of micropollutants in natural water sources due to the overuse of anthropogenic chemicals in industry and households has threatened the production of clean and safe tap water in drinking water treatment plants. Conventional physicochemical processes such as coagulation/flocculation followed by sand filtration are not effective for the control of micropollutants, whereas chemical oxidation processes (applying chlorine, permanganate, ozone, etc.) are known to be promising alternatives. Determining the optimum oxidant dose is important issue related to the production of disinfection by-products as well as unnecessary operating cost, and is made possible by simulations of target-micropollutant abatement based on kinetic model equation consisting of second-order rate constant (between the oxidant and the target) and oxidant exposure. However, the difficulty in determining oxidant exposure as a function of complex water quality parameters limits the field application of kinetic model equation. With respect to representative oxidants used in drinking water treatment plants, this article reviews two main approaches for determining oxidant exposure: i) direct measurement in situ and ii) prediction by empirical models based on key water quality parameters. In addition, we discussed research requirements to improve the predictive accuracy of the empirical models for oxidant exposure and to develop a rational algorithm to determine optimal oxidant dose by considering the priority of the target pollutants to be treated.
        4,800원
        6.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the safety of tap water, a study was conducted on the introduction of sanitation safety certification system for water treatment plants(WTPs). In order to produce and supply safe tap, the inflow of pollutants should be blocked as much as possible during the tap water production process, and contaminated materials should be removed or inactivated to a safe level in the WTPs. In order to block the inflow of pollutants in WTPs, it is necessary to strengthen the sanitation management such as installation of facilities for preventing inflow and habitat of larvae, and to remove or inactivate pollutants in the tap water production process, strengthening the safety management such as enhanced turbidity management is needed. Sanitation and safety management in the WTPs can be significantly improved by introducing certification system of WTPs. This will induce continuous improvement in water purification plants with insufficient sanitation and safety management, and provide incentives for WTPs with good sanitation and safety management. In addition, when the WTPs sanitation and safety certification system is established, it is desirable to expand the proposed system from WTPs to the entire process of tap water production and supply.
        4,000원
        7.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 Y정수처리시설에 20-40 m3/m2/h의 표면부하율을 갖는 고속 용존공기부상공정을 도입하였다. 우선, 용존공기부상공정과 입상활성탄 공정이 결합된 반응기를 일처리용량 500 m3/day의 조건으로 운전하였다. 운전결과는 두 공정이 원수내 탁도, 조류, 지오스민, 2-MIB를 감소시킬 수 있음을 증명하였다. 도출된 최적 설계요소를 활용하여 현장규모의 공정(5,000 m3/day)에 용존공기부상공정을 도입하였다. 여름철 56일간 조류와 탁도 제거율을 평가하였다. 처리수 내 조류의 개체수는 20-30 cells/mL 이하로 유지되었으며, 조류 제거효율은 80-89%를 기록하였다. 침전법 및 용존공기부상공정 처리수질의 탁도 제거효율을 비교한 결과 평균 탁도 제거효율은 77%를 나타냈다. 이러한 결과들은 고속 용존공기부상공정이 여름철 음용수의 탁도 및 조류와 같은 저밀도 고형물을 제거하는데 유의미한 방법임을 나타냈으며, GAC는 맛・냄새를 유발하는 화합물(지오스민, 2-MIB)를 제거할 수 있는 공정 옵션인 것을 확인하였다.
        4,300원
        8.
        2022.10 구독 인증기관·개인회원 무료
        Regulations on the concentration of boron discharged from industrial facilities, including nuclear power plants, are increasingly being strengthened worldwide. Since boron exists as boric acid at pH 7 or lower, it is very difficult to remove it in the existing LRS (Liquid Radwaste System) using RO and ion exchange resin. As an alternative technology for removing boron emitted from nuclear power plants, the electrochemical boron removal technology, which has been experimentally applied at the Ringhal Power Plant in Sweden, was introduced in the last presentation. In this study, the internal structure of the electrochemical module was improved to reduce the boron concentration to 5 mg/L or less in the 50 mg/L level of boron-containing waste liquid. In addition, the applicability of the electrochemical boron removal technology was evaluated by increasing the capacity of the unit module to 1 m3/hr in consideration of the actual capacity of the monitor tank of the nuclear power plant. By applying various experimental conditions such as flow rate and pressure, the optimum boron removal conditions using electrochemical technology were confirmed, and various operating conditions necessary for actual operation were established by configuring a concentrated water recirculation system to minimize secondary waste generation. The optimal arrangement method of the 1 m3/hr unit module developed in this study was reviewed by performing mathematical modeling based on the actual capacity of monitor tank and discharge characteristics of nuclear power plant.
        9.
        2022.05 구독 인증기관·개인회원 무료
        The Fukushima nuclear power plant accident, which was caused by the Great East Japan Earthquake on March 11, 2011, is of great concern to the Korean people. The scope of interest is wide and diverse, from the nuclear accident itself and the damage situation, to the current situation in Fukushima Prefecture and Japan, and to the safety of Japanese agricultural and fishery products. Concerns about nuclear safety following the Fukushima nuclear accident have a significant impact on neighboring nation’s energy policy. It has been 11 years since the Fukushima nuclear accident. In neighboring nation society, the nature and extent of damage caused by the Fukushima nuclear accident, the feasibility of follow-up measures at home and abroad, the impact on neighboring nations, and the direction of nuclear policy reflecting the lessons of the accident are hotly debated topics. Recently, the controversy has grown further as it is intertwined with Japan’s concerns about the safety and discharge of the contaminated water into the sea, and conflicts over domestic nuclear power policies. About 1.29 million tons, as of March 24, 2022, of the contaminated water are generated, which is close to the 1.37 million tons of water storage capacity. In response, the Japanese government announced on April 13, 2021, that it plans to discharge the contaminated water into the sea from 2023. This study evaluates the amount of the contaminated water that has passed through the ALPS and reviews the preparations and related facilities for ocean discharge after diluting the contaminated water. In addition, it is intended to forecast the various impacts of ocean discharge.
        14.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A 1,000 m3/d DAF(dissolved air flotation) pilot plant was installed to evaluate the performance of the floating process using the Nakdong River. Efficiency of various DAF operations under different conditions, such as hydraulic loading rate, coagulant concentration was evaluated in the current research. The operation conditions were evaluated, based on the removal or turbidity, TOC(total organic carbon), THMFP(trihalomethane formation potential), Mn(manganese), and Al(aluminum). Also, particle size analysis of treated water by DAF was performed to examine the characteristics of particles existing in the treated water. The turbidity removal was higher than 90%, and it could be operated at 0.5 NTU or less, which is suitable for the drinking water quality standard. Turbidity, TOC, and THMFP resulted in stable water quality when replacing the coagulant from alum to PAC(poly aluminum chloride). A 100% removal of Chl-a was recorded during the summer period of the DAF operations. Mn removal was not as effective as where the removal did not satisfy the water quality standards for the majority of the operation period. Hydraulic loading of 10 m/h, and coagulant concentrations of 40 mg/L was determined to be the optimal operating conditions for turbidity and TOC removal. When the coagulant concentration increases, the Al concentration of the DAF treated water also increases, so coagulant injection control is required according to the raw water quality. Particle size distribution results indicated that particles larger than 25 μm showed higher removal rates than smaller particles. The total particel count in the treated water was 2,214.7 counts/ml under the operation conditions of 10 m/h of hydraulic loading rate and coagulant concentrations of 60 mg/L.
        4,000원
        15.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 점오염원인 하수종말처리장으로부터 배출되는 물의 수질을 분석하고 배출수의 영향을 받는 어류 중 지점들에서 공통적으로 출현하는 어종인 피라미 (Z. platypus) 를 선택하여 조직학적 변화를 참조하천 지점의 수질과 어류 조직을 비교·분석하였다. 2019년 6월 27~28일 하수종 말처리장 4곳 (대전, 전주, 청주, 익산)의 채집 결과, 참조하 천에서 22종 450개체로 가장 많은 종수 및 개체수가 확인 되었다. 지점별로 5개체씩 2~3년생 피라미의 조직표본을 제작하여 아가미와 근육조직 (피부조직)을 관찰한 결과, 참조하천을 제외한 나머지 지점의 조직은 병리적인 양상을 나타내었다. 수질분석 결과, 각 WTP에서는 배출수질 기준을 준수 혹은 더 좋은 수질로 방류하고 있었다. 그러나 하수종말처리수 배출수 및 방류수계 수질에서 오염도지표를 나타내는 항목인 BOD, COD, TP, TN, SS 값이 참조하천에 비해 높은 것으로 나타났다. 빈약한 어류상과 바이오마커로 이용된 종의 조직병리학적 상태는 참조하천에 비해 낮은 수질에서 기인한 것으로 추측되며, 따라서 원인이 되는 하수종말처리장 배출수 수질개선이 이루어져야 할 것으로 사료된다.
        4,500원
        16.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500m2/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.
        4,300원
        19.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As water resources are limited and legal regulations are strengthened, there is a growing need to reuse residuals in WTP(Water Treatment Plant). In this study, membrane filtration system was constructed and its operation method was studied for water quality stabilization and reuse of WTP residuals. The operation parameters were stable for 1 year and 6 months. Membrane fouling was identified as particulate pollution (activated carbon) and inorganic pollution (manganese). The membrane system was operated steadily with raw water of high concentration SS(Suspended solid) containing activated carbon because membrane fouling was reduced by the effect of End-Free type. In the case of inorganic contamination, dissolved manganese eluted by chemicals and acted as a membrane fouling source, and the operating conditions for minimizing membrane fouling were confirmed by newly developing application methods and types of cleaning chemicals. Based on the results, design parameters for reducing manganese membrane fouling were derived.
        4,300원
        1 2 3 4 5