본 논문은 최근 6년간(2018년~2023년) 한국의 주력 산업인 반도체, 디스플레이, 전 기·전자, 자동차 등 HS 6단위 기준 총 94개 품목을 대상으로 수출편향지수(EBI), 대 칭적 현시비교우위지수(RSCA), 불변시장점유율(CMS) 등 무역통계지표를 통해 한· 중 양국의 소재·부품·장비의 경쟁력과 수출증감요인을 분석하였다. 분석 결과, 반도 체 관련 품목의 대중국 수출편향이 증가한 반면 디스플레이 품목은 EBI 지수 감소 하고 있어 중국 내 품목으로 대체되고 있는 것으로 추정할 수 있었다. 또한 자동차 관련 품목의 EBI 지수가 전체 분석 기간 1 이하로 중국에 대한 수출집중도가 낮을 뿐 아니라 수입 편향에 있음을 확인할 수 있었다. 대칭적 현시비교우위지수(RSCA) 분석에서 품목별 차이는 있지만 전기·전자 품목은 세계시장에서 상대적으로 낮은 경 쟁력을 보유하고 있었다. 반면 반도체, 디스플레이 및 자동차 관련 품목은 일부 품목 을 제외하고 중국과 비교하여 비교우위를 나타내고 있었다. 불변시장점유율(CMS) 분석에서 기준년도(2018년) 대비 비교연도(2023년)의 한국의 대중국 감소 요인이 수 입규모요인보다 경쟁력요인과 수입구조요인이 더 큰 영향을 미치는 것으로 분석되었 다. 이는 한국의 소재·부품·장비 관련 품목의 경쟁력 감소와 일본 등 제3국의 경쟁력 상승으로 인해 한국의 대중국 수출 감소를 가져온 것으로 추정되었다.
Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
This study explores strategies to expand Korea's top 10 seafood export in the oversea market, with a specific focus on the impact of export concentration. For certain seafood items such as laver, crab, and mackerel, characterized by low export concentration, adopting a focused export expansion strategy is more effective. Conversely, highly concentrated seafood items such as toothfish, cod, pollack, and abalone face high risks in export performance due to their heavy reliance on a small number of key export countries. To ensure export stability, it is advisable to implement a diversified export expansion strategy for these highly concentrated seafood items. In the case of medium-concentration seafood items like tuna, oyster, and flounder, the decision between a concentrated or diversified strategy should be based on their specific export situations. Tailoring strategies to the distinctive market characteristics of each seafood item enables exporters to effectively increase oversea market share, promoting stability and sustained growth in export performance.
When exporting nuclear-related items, export control is required from two perspectives: the control of “Trigger List Items” as controlled by Nuclear Supplier Groups (NSG) and the control of the “Items Subject to the Agreement” as specified in bilateral Nuclear Cooperation Agreements. While Trigger List Items and Items Subject to the Agreement are largely similar, there are some items where they do not overlap. Furthermore, national law for controlling each item is different. The Trigger List Items are governed by the Foreign Trade Act, and the Items Subject to the Agreement (Internationally Controlled Items) are governed by the Nuclear Safety Act. As a result, the detailed procedures and requirements for controlling each item are quite distinct. For the Trigger List Items, export license must be obtained in accordance with the Foreign Trade Act. The details such as responsible authority, the items subject to license, license requirements and procedures, penalties are specified in the Public Notice on Import and Export of Strategic Goods. For the Items Subject to the Agreement, the process and obligations set forth in bilateral agreements and related administrative agreements are fulfilled in accordance with the Nuclear Safety Act. However, in contrast to the Trigger List Items, the details for complying with the agreements are not specified legally. Since most of the Items Subject to the Agreement are fall within the category of the Trigger List Items, the obligations in accordance with the agreements are reviewed and implemented during the export license assessment process. However, if the Items Subject to the Agreement are not are fall within the category of the Trigger List Items, there is a risk of control omission. For example, this applies to cases of exporting tritium and tritium removal facilities, which are not the Trigger List Items, to Canada and Romania. Moreover, since subjects to the agreement and compliance procedures are respectively different for 29 bilateral Nuclear Cooperation Agreements signed with different countries, it is difficult for enterprise to recognize the appropriate procedures and obligations under the agreement by their own. The bilateral Nuclear Cooperation Agreements establish legal obligations between state parties while NSG are non-legally binding arrangements. Therefore, it could be even more necessary to comply strictly with the agreements. Consequently, legal improvements are required for effective implementations of Nuclear Cooperation Agreements. While it may be challenging to institutionalize details of 29 Nuclear Cooperation Agreements, it is essential to legally specify key elements such as the list of items subject to agreements, responsible authority, requirements and procedures for implement the agreement obligations, and penalties. Furthermore, domestic awareness on compliance with Nuclear Cooperation Agreements is lower compared to the system of export license for Trigger List Items. The continuous outreach is also necessary, along with institutional improvements.
The Nuclear Export and Import Control System (NEPS) is currently in operation for nuclear export and import control. To ensure consistent and efficient control, various computational systems are either already in place or being developed. With numerous scattered systems, it becomes crucial to integrate the databases from each to maximize their utility. In order to effectively utilize these scattered computer systems, it is necessary to integrate the databases of each system and develop an associated search system that can be used for integrated databases, so we investigated and analyzed the AI language model that can be applied to the associated search system. Language Models (LM) are primarily divided into two categories: understanding and generative. Understanding Language Models aim to precisely comprehend and analyze the provided text’s meaning. They consider the text’s bidirectional context to understand its deeper implications and are used in tasks such as text classification, sentiment analysis, question answering, and named entity recognition. In contrast, Generative Language Models focus on generating new text based on the given context. They produce new textual content continuously and are beneficial for text generation, machine translation, sentence completion, and storytelling. Given that the primary purpose of our associated search system is to comprehend user sentences or queries accurately, understanding language models are deemed more suitable. Among the understanding language models, we examined BERT and its derivatives, RoBERTa and DeBERTa. BERT (Bidirectional Encoder Representations from Transformers) uses a Bidirectional Transformer Encoder to understand the sentence context and engages in pre-training by predicting ‘MASKED’ segments. RoBERTa (A Robustly Optimized BERT Pre-training Approach) enhances BERT by optimizing its training methods and data processing. Although its core architecture is similar to BERT, it incorporates improvements such as eliminating the NSP (Next Sentence Prediction) task, introducing dynamic masking techniques, and refining training data volume, methodologies, and hyperparameters. DeBERTa (Decoding-enhanced BERT with disentangled attention) introduces a disentangled attention mechanism to the BERT architecture, calculating the relative importance score between word pairs to distribute attention more effectively and improve performance. In analyzing the three models, RoBERTa and DeBERTa demonstrated superior performance compared to BERT. However, considering factors like the acquisition and processing of training data, training time, and associated costs, these superior models may require additional efforts and resources. It’s therefore crucial to select a language model by evaluating the economic implications, objectives, training strategies, performance-assessing datasets, and hardware environments. Additionally, it was noted that by fine-tuning with methods from RoBERTa or DeBERTa based on pre-trained BERT models, the training speed could be significantly improved.
The Korea Institute of Nuclear Nonproliferation and Control (KINAC) conducts various outreach activities, such as publishing brochures and holding seminars and briefings, to make regulated parties aware of the importance and necessity of the export control regime. The outreach program aims to increase compliance rates by generating interest in the export control regime among recipients and to increase communication to support compliance. In order to explore the long-term development of outreach activities, we analyze how KINAC conducts outreach. KINAC conducts nuclear export control outreach to organizations that deal with trigger list items and related technologies. Educational institutions with nuclear energy-related departments, research institutes related to nuclear energy and materials, and industrial companies that handle equipment used in nuclear power plants or nuclear materials were selected for outreach. The outreach program provides information on the export control regime for trigger list items, the strategic technology control regime, and the Nuclear Cooperation Agreement. KINAC’s outreach programs can be categorized into education, exhibition, and publication. In the education program, we hold workshops and seminars for industrial companies, with customized content that considers the items handled by companies and the nature of technology transfer. We provide training for educational and research institutions focused on conducting research tasks and projects and transferring technology accordingly. As a result of the education program, there is a regret that the education for SMEs and educational institutions is not directly linked to the implementation of nuclear export control. The exhibition program operated a booth at nuclear-related exhibitions at least once a year. The booth distributed brochures or publications on the export control regime, conducted surveys to investigate awareness of the regime and conducted on-site consultations. The exhibition program effectively increased the understanding of the export control regime among the general public and potential regulated parties. However, it was only sometimes linked to the actual implementation of nuclear export control. The publication program produced promotional materials for use at education and exhibitions, as well as guidance materials on new and revised regulations. It used the agency’s online media to provide information on new and revised export control legislation and related issues. As a result of the publication program, various existing publications explaining the export control regime were consolidated into a single publication, increasing the efficiency and satisfaction of outreach.
Emerging technologies are innovative technologies currently under development or in the early stages of introduction. These technologies have the potential to impact a wide range of industries and sectors significantly and may, therefore, be subject to export controls. The list of emerging technologies subject to export controls varies from country to country and constantly changes as new technologies are developed. For example, the U.S., EU, and South Korea have responded to these changes by adding software and technologies related to artificial intelligence and machine learning to their export control lists. Nevertheless, export control of emerging technologies still presents challenges and limitations. The rapid pace of technological advancement makes it difficult for export control regulations to keep up. For export control purposes, international cooperation on information sharing and control methods is necessary for most countries to control similar items. Several new technologies in the nuclear field may be subject to export controls. These technologies include advanced reactors, nuclear fuel cycle technologies, and nuclear waste management technologies. Small modular reactors (SMRs) and fourth-generation reactors are being developed as advanced technologies, and new technologies are being developed to improve the nuclear fuel cycle. There is also active development of technologies for space applications utilizing nuclear reactors, such as the Nuclear Thermal Propulsion System and the Nuclear Electric Propulsion System. As these technologies may include new systems and items not in existing export control, they may pose a proliferation risk or may include software design know-how for advanced materials, it is necessary to consider whether and how they should be subject to export control to prevent nuclear proliferation. Overall, export controls are an essential issue in the emerging technology and nuclear energy sectors. Countries are moving toward strengthening regulations and international cooperation to overcome these challenges and ensure safe technology transfer, and South Korea should actively participate and lead this trend.
Strategic item export control aims to maintain international peace and safety and serves as a significant nuclear non-proliferation regime that directly impacts a nation’s security. Therefore, establishing an autonomous export control system at the state level is crucial, and one of the most efficient methods to achieve this is by enhancing an export company’s management system. Accordingly, many advanced countries, such as the United States, Europe, and Japan, have operated their own internal compliance programs (CP or ICP) to manage and screen the export of strategic items as a corporate social responsibility and risk mitigation measure. In Korea, which has a high dependence on trade, the need for CP was continuously confirmed, but the system was introduced in 2004, relatively late compared to other advanced countries. So far, the Korean government has made steady efforts to develop and establish the system and is actively encouraging businesses to obtain Compliance Program certification to autonomously manage strategic items. Major technologically advanced countries utilize technology transfer as a tool for economic sanctions, trade security, and strategic technology management, and they continue to strengthen their control regimes. In these countries, CP certification is considered a standard practice for export control among mid-sized and large enterprises. It serves as a vital risk management system that protects companies from unforeseen incidents. However, in Korea, the application of CP under the Foreign Trade Act is limited to dual-use items and does not extend to the nuclear export control system. Therefore, this paper analyzes international cases and CP requirements in countries like the United States, Japan, Europe, and Singapore. As a result of the review, the application of CP into Korea’s nuclear export control could be a coexistence means that can strengthen supply chain control as well as provide benefits not to impede technical research, international trade, and exchanges.
Korea has signed nuclear cooperation agreements (NCA) with 29 countries. Nuclear materials, materials, equipment, and technology transferred under the agreements are “internationally controlled materials (ICM)” under the Nuclear Safety Act. The main obligations imposed on those items include ensuring peaceful use, safeguards, physical protection, annual inventory reporting, and retransfer with supplier prior consent. The Nuclear Export and Import Control System (NEPS) handles the export control procedures for transferring ICM. After import, inventory management for ICM in Korea would be transitioning to an item-based system through the Obligation Tracking System for internationally controlled item (OTS) currently under development. A one-stop import and export control system for ICM can be established when information is well-linked between these two systems. This paper aims to derive a methodology for integrating NEPS and OTS. NEPS-OTS coupling begins at the receipt confirmation and shipment notification stages in NEPS. When importing ICM under NCA, the inventory change (code RF: receipt foreign) is entered in OTS by getting the information that has completed the receipt confirmation in NEPS. Conversely, during export, the information that has completed the shipment notification procedure in NEPS is linked to the OTS so that the entire cycle from import to re-export of the ICM can be concluded. Inventory verification for retransfer, checking that the book inventory remains positive value, is impossible under the current system. This issue can be resolved by enabling inventory information in OTS to be displayed in NEPS. Determining when and how to generate the obligation code for imported ICM is essential for NEPS-OTS coupling. Manual input may be necessary for some cases with multiple obligations. Nevertheless, it is more efficient from a system communication protocol to automatically generate and impose a single obligation based on the supplier country information in NEPS. Moreover, it is important to automatically link crucial information available in NEPS to reduce the administrative burden on OTS users and discrepancies between systems. Most required OTS data, such as country obligation, item categories, quantity, physical or chemical form, and receipt date, can be directly linked from NEPS. However, NEPS improvement is needed for digitizing the receiver information and facility data, like the material balance area. The NEPS-OTS integration involves sharing data as a system and encompasses the connection between export control and inventory management. Future work to link some information in NEPS -OTS with the KSIS could be suggested to enhance efficiency and effectiveness in managing ICM.
The Korea Institute of Nuclear Nonproliferation and Control (KINAC) conducts outreach to promote and educate regulated entities on the export control regime’s purpose, importance, and implementation. Outreach activities help to reduce regulatory blind spots and minimize domestic and international penalties for non-compliance. The need for outreach is growing as domestic and international policies are changing rapidly, and the scope of export regulations is expanding due to increased exports of nuclear power plants. In order to explore the long-term development direction of outreach activities, we will analyze the trends of nuclear export control and the outreach activities of related organizations. Here are some key trends in nuclear export controls. In recent years, countries worldwide have been reorganizing their supply chains for critical industries, focusing on their own and friendly countries, and strengthening their trade policies in security aspects such as export control and technology protection. Following the trend of international sanctions against Russia, the Korean government has implemented domestic export control measures similar to those of the international community, such as blocking the export of strategic goods to Russia. In addition, the number of strategic goods classifications and export licenses has been increasing as Korea promotes the export of new nuclear power plants. In line with carbon neutrality, it is expected to revitalize and diversify nuclear energy-related export businesses, such as joint research on fourth-generation nuclear power plants and SMRs. Finally, the scope of exports is expanding from ‘goods’ such as existing nuclear reactors to ‘technology’-oriented transfers. The means of technology transfer are diversifying with the development of information and communication technologies such as cloud services, email, video conferencing, and large-capacity removable storage devices. Next, look at the outreach activities of nuclear export control organizations. The Korean Security Agency of Trade and Industry (KOSTI) is an organization that implements export controls on dualuse items. It puts much effort into one-on-one consulting services with companies and has established and operated various online training programs. It also actively utilizes online promotional materials such as card news and videos. The export control agencies of major countries have a common trend of expanding outreach to research institutions, providing export control guides tailored to the characteristics of each field, holding annual seminars and conferences, and operating educational programs
In compliance with the amended export control of strategic items and technology in Jan. 2014, KAERI should pay attention to the export control of ITT (Intangible Technology Transfer). To control an ITT (Intangible Technologies Transfer) effectively and efficiently, the Korean government encourages the R&D institute and universities obtaining the ICP (Internal Compliance Program) from the relevant authority, MOTIE. This means that the exporters can control the ITT by themselves, because the exporters know very well the counterparts of the trading and the exporting items and technologies. In fact, ICP is for export control of dual-use items and technology in Korea. However, KAERI has tried to obtain a license from the authority, MOTIE. In an effort to do so, KAERI completed enacting a new internal self–regulation for export controls in 2016, and proceeded to apply for an ‘AA’ license of ICP in 2017 and obtained the ICP license in 2018 and re-obtained the license in 2021 from the MOTIE. In light of KAERI’s case, to obtain the ‘AA’ license of ICP is one of the best methods to increase the ability of export controls. As of now, there is no R&D institutes sponsored by the Korean government to obtain the ‘AA’ license of ICP except KAERI. KAERI can provide the actual methods as a standard case to the R&D institutes in Korea for obtaining an ‘AA’ license of ICP. According to the internal regulation of KAERI for export control, KAERI implemented an inner self-audit for export control in Nov. 2022. This is the first real self-audit for export control at KAERI. The main purpose of the self-audit is to check the transfer management of ITT and the relationship of relevant office through the interview of the staffs in the ICP organization. KAERI self-audit planed specifically and implemented for the achievement of the basic principal of selfaudit. The specific contents of this self-audit is as follows - The interview of the relevant offices: physical protection office, manpower planning office, manpower management office, nuclear education and training center, technology transfer office and international cooperation office, nuclear control and management office - Building the self-audit checklist considering the characteristics of each office - The confirmation of the inner procedure and the status of management on the export controls Through the interview of the relevant office, KAERI checked the inner procedure and the status of management on the export controls and tried to provide the supplementary measures of each relevant offices. The followings are the main results of the inner self-audit implemented in Nov. 2022. - Generally, the staffs know the meaning and relevant regulation such as foreigner’s management and the intangible technology transfer - Each office reflects the necessities of export controls on the relevant regulation and procedures and make DB for the proper duty. However, there is no indication for export controls on the DB - In the case of foreigner’s temporary visit for simple work and site tour, there is a difficult situation not to be able to check all the visitors by checking the denial lists - If necessary, KAERI may build the TFT (Task force Team) for the efficiency of export controls - Others