The synthesis of porous W by freeze-casting and vacuum drying is investigated. Ball-milled WO3 powders and tert-butyl alcohol were used as the starting materials. The tert-butyl alcohol slurry is frozen at –25oC and dried under vacuum at –25 and –10oC. The dried bodies are hydrogen-reduced at 800oC and sintered at 1000oC. The XRD analysis shows that WO3 is completely reduced to W without any reaction phases. SEM observations reveal that the struts and pores aligned in the tert-butyl alcohol growth direction, and the change in the powder content and drying temperature affects the pore structure. Furthermore, the struts of the porous body fabricated under vacuum are thinner than those fabricated under atmospheric pressure. This behavior is explained by the growth mechanism of tert-butyl alcohol and rearrangement of the powders during solidification. These results suggest that the pore structure of a porous body can be controlled by the powder content, drying temperature, and pressure.
The effects of drying temperature on the microstructure of porous W fabricated by the freeze-casting process of tert-butyl alcohol slurry with WO3 powder was investigated. Green bodies were hydrogen-reduced at 800oC for 1 h and sintered at 1000oC for 6 h. X-ray diffraction analysis revealed that WO3 powders were completely converted to W without any reaction phases by hydrogen reduction. The sintered body showed pores aligned in the direction of tertbutyl alcohol growth, and the porosity and pore size decreased as the amount of WO3 increased from 5 to 10v ol%. As the drying temperature of the frozen body increased from -25oC to -10oC, the pore size and thickness of the struts increased. The change in microstructural characteristics based on the amount of powder added and the drying temperature was explained by the growth behavior of the freezing agent and the degree of rearrangement of the solid powder during the solidification of the slurry.
The effect of tert-butyl alcohol (TBA) as a freezing solvent on the pore structure of a porous tungsten body prepared by freeze-drying is analyzed. TBA slurries with a WO3 content of 10 vol% are prepared by mixing with a small amount of dispersant and binder at 30oC. The slurries are frozen at -25oC, and pores are formed in the frozen specimens by the sublimation of TBA during drying in air. After hydrogen reduction at 800oC and sintering at 1000oC, the green body of WO3 is completely converted to porous W with various pore structures. Directional pores from the center of the specimen to the outside are observed in the sintered bodies because of the columnar growth of TBA. A decrease in pore directionality and porosity is observed in the specimens prepared by long-duration drying and sintering. The change in pore structure is explained by the growth of the freezing solvent and densification.
The feasibility of infrared assisted freeze drying (IRAFD) was evaluated for shelf stable sea cucumber to improve the traditional drying methods such as freeze drying (FD), vacuum drying (VD) and hot air drying (AD, 60, 80, 100oC). Infrared (IR) radiant energy was provided to accelerate the drying rate of freeze drying (FD). IRAFD had the most rapid drying rate among IRAFD, FD and VD. IRAFD showed drying time of 13.7 h followed by VD (18.7 h) and FD (24.3 h). In the final moisture content of sea cucumber, it decreased down to 3.25% at IRAFD. However, FD and VD could not reduce down the moisture content of sea cucumber below 7%. Quality attributes of AD sea cucumber were not acceptable with very low restoration rate and excessive hardness. For example, AD 100 had very low weight restoration rate of 23% and hardness of 22 N. IRAFD showed quite high restoration rates (weight: 50%, width: 82%, length: 91%) and acceptable hardness of 3.1 N. IRAFD consumed the minimal electrical energy of 120 kJ as compared to 209 kJ of FD. This study showed the potential application of IRAFD to produce the shelf stable dried sea cucumber with microbial safety.
The effect of sublimable vehicles on the pore structure of Cu fabricated by freeze drying is investigated. The 5 vol% CuO-dispersed slurries with camphene and various camphor-naphthalene compositions are frozen in a Teflon mold at -25oC, followed by sublimation at room temperature. After hydrogen reduction at 300oC and sintering at 600 °C, the green bodies of CuO are completely converted to Cu with various pore structures. The sintered samples prepared using CuO/camphene slurries show large pores that are aligned parallel to the sublimable vehicle growth direction. In addition, a dense microstructure is observed in the bottom section of the specimen where the solidification heat was released, owing to the difference in the solidification behavior of the camphene crystals. The porous Cu shows different pore structures, such as dendritic, rod-like, and plate shaped, depending on the composition of the camphornaphthalene system. The change in pore structure is explained by the crystal growth behavior of primary camphor and eutectic and primary naphthalene. Keywords: Porous Cu, Pore structure
Porous Cu-14 wt% Co with aligned pores is produced by a freeze drying and sintering process. Unidirectional freezing of camphene slurry with CuO-Co3O4 powders is conducted, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The dried bodies are hydrogen-reduced at 500oC and sintered at 800oC for 1 h. The reduction behavior of the CuO-Co3O4 powder mixture is analyzed using a temperature-programmed reduction method in an Ar-10% H2 atmosphere. The sintered bodies show large and aligned parallel pores in the camphene growth direction. In addition, small pores are distributed around the internal walls of the large pores. The size and fraction of the pores decrease as the amount of solid powder added to the slurry increases. The change in pore characteristics according to the amount of the mixed powder is interpreted to be due to the rearrangement and accumulation behavior of the solid particles in the freezing process of the slurry.
In this study, freeze drying of a porous Ni with unidirectionally aligned pore channels is accomplished by using a NiO powder and camphene. Camphene slurries with NiO content of 5 and 10 vol% are prepared by mixing them with a small amount of dispersant at 50℃. Freezing of a slurry is performed at -25℃ while the growth direction of the camphene is unidirectionally controlled. Pores are generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies are hydrogen-reduced at 400℃ and then sintered at 800℃ and 900℃ for 1 h. X-ray diffraction analysis reveals that the NiO powder is completely converted to the Ni phase without any reaction phases. The sintered samples show large pores that align parallel pores in the camphene growth direction as well as small pores in the internal walls of large pores. The size of large and small pores decreases with increasing powder content from 5 to 10 vol%. The influence of powder content on the pore structure is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.
In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with MoO3-CuO powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at -25℃, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at 750℃ and sintered at 1000℃ for 1 h. X-ray diffraction analysis reveals that MoO3- CuO composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.
The present study demonstrates the effect of raw powder on the pore structure of porous W-Ni prepared by freeze drying of camphene-based slurries and sintering process. The reduction behavior of WO3 and WO3-NiO powders is analyzed by a temperature programmed reduction method in Ar-10% H2 atmosphere. After heat treatment in hydrogen atmosphere, WO3- NiO powder mixture is completely converted to metallic W without any reaction phases. Camphene slurries with oxide powders are frozen at −30 oC, and pores in the frozen specimens are generated by sublimation of the camphene during drying in air. The green bodies are hydrogen-reduced at 800 oC and sintered at 1000 oC for 1 h. The sintered samples show large and aligned parallel pores to the camphene growth direction, and small pores in the internal wall of large pores. The strut between large pores, prepared from pure WO3 powder, consists of very fine particles with partially necking between the particles. In contrast, the strut densification is clearly observed in the Ni-added W sample due to the enhanced mass transport in activation sintering.
Porous Cu with a dispersion of nanoscale Al2O3 particles is fabricated by freeze-drying CuO-Al2O3/camphene slurry and sintering. Camphene slurries with CuO-Al2O3 contents of 5 and 10 vol% are unidirectionally frozen at -30oC, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at 700oC and 800oC in H2 atmosphere. The sintered samples show large pores of 100 μm in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ~10 μm in size. The size of the large pores decreases with increasing CuO-Al2O3 content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm Al2O3 particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and H2 reducing process.
Porous W-10 wt% Ti alloys are prepared by freeze-drying a WO3-TiH2/camphene slurry, using a sintering process. X-ray diffraction analysis of the heat-treated powder in an argon atmosphere shows the WO3 peak of the starting powder and reaction-phase peaks such as WO2.9, WO2, and TiO2 peaks. In contrast, a powder mixture heated in a hydrogen atmosphere is composed of the W and TiW phases. The formation of reaction phases that are dependent on the atmosphere is explained by a thermodynamic consideration of the reduction behavior of WO3 and the dehydrogenation reaction of TiH2. To fabricate a porous W-Ti alloy, the camphene slurry is frozen at -30℃, and pores are generated in the frozen specimens by the sublimation of camphene while drying in air. The green body is hydrogen-reduced and sintered at 1000℃ for 1 h. The sintered sample prepared by freeze-drying the camphene slurry shows large and aligned parallel pores in the camphene growth direction, and small pores in the internal walls of the large pores. The strut between large pores consists of very fine particles with partial necking between them.
In this study, a method to produce a fine volatile powder extracted from shiitake mushrooms using spray freeze-drying (SFD) was investigated. The analysis of the water-soluble aromatic compounds was carried out by headspace solid phase micro-extraction (HS-SPME) coupled withgas chromatography-mass spectrometry (GC-MS). Scanning electron microscopy (SEM) and laser particle size analysis were applied to characterizethe physical structure and size distribution of the SFD-derivedparticles. Eleven key volatile compounds were identified in the extracts of shiitake mushroomspre- and post-SFD. Recoveries of aromatic volatiles ranging from 30.9 - 82.9% were observed in the overall flavor profile results from the powder obtained with SFD. SEM analysis demonstrated that the particles of the aromatic powderwere spherical in nature, having highly porous surfaces andmean diameters of 19.3 μm.
Spray freeze-drying (SFD) is a comparatively new method of producing biopharmaceutical powder preparations. In this study, Lactobacillus casei (IFO 15883)was spray freeze-dried to obtain a fine probiotic powder. The survival rate of L. casei in the powder after the SFD process was measured using plate agar counting. To improve the survival rate of L. casei during the SFD process, various experimental conditions were carried out. Among five growth media compositions, in Lactobacilli MRS broth with 1% mannose and 0.1% CaCO3, the viability of the freeze-dried powder was not significantly different from that of the initial powder (p>0.05). The most effective air pressure and protective agentduring SFD were 20 kPa and buffered peptone water (BPW), respectively. Scanning electron microscopy (SEM) was applied to estimate the physical structure and properties of the particles. SFD probiotic particles were of various shapes and sizes with porous structures under different SFD conditions. The average diameter of optimized probiotic powder particles with annealing was 24.8 μm. The survival rate of the final SFD probiotic powder under conditions was 97.7%.
이중가닥 RNA (double-stranded RNA, dsRNA)는 표적 유전자의 발현을 억제하는 기능으로 해충방제에 응용되었다. 인테그린은 α와 β 단위체로 구성된 이량체 막 단백질이다. 진핵생명체에서 인테그린은 세포-세포 및 세포-세포외기질의 상호연결에 중요한 역할을 담당한다. 인 테그린 β 단위체 발현을 억제하는 특정한 dsRNA (= dsINT)는 해당 곤충에 뚜렷한 치사효과를 유발한다. 또한, dsINT를 발현시키는 형질전환 된 대장균도 해당 곤충에 뚜렷한 살충력을 가진다. 그러나 이 세균 살충제의 야외 적용을 위해서는 제형화 기술이 필요했다. 본 연구는 dsINT를 발현하는 재조합 세균을 동결 건조시켜 대상 곤충에 대해 살충효능을 검정하였다. 동결 건조된 세균은 파밤나방(Spodoptera exigua) 종령 유충에 높은 섭식독을 일으켰다. 파밤나방에 대해서 Bacillus thuringiensis 상용 살충제 처리는 불과 60%의 살충력을 보이는 반면, 동결 건조된 dsINT 발현 세균과 혼합 처리할 때 살충력은 크게 증가하였다. dsINT 발현 세균은 해당 인테그린 염기서열 유사성에 따라 차이를 보이는 해충 종에 선 택적 독성을 나타냈다. 이 결과는 인테그린에 특이적 dsRNA를 발현하는 세균이 동결 건조 제형화 조건하에서도 살충력을 유지한다는 것을 나타 냈다.
Porous SiC beads were prepared by freeze-drying a polycarbosilane (PCS) emulsion. The water-in-oil (w/o) emulsion, which was composed of water, PCS dissolved p-xylene, and sodium xylenesulfonate (SXS) as an emulsifier, was frozen by dropping it onto a liquid N2 bath; this process resulted in 1~2 mm sized beads. Beads were cured at 200 oC for 1 h in air and heat-treated at 800 oC and 1400 oC for 1 h in an Ar gas flow. Two types of pores, lamella-shaped and spherical pores, were observed. Lamellar-shaped pores were found to develop during the freezing of the xylene solvent. Water droplets in the w/o emulsion were changed into spherical pores under freeze-drying. At 1400 oC of heat-treatment, porous SiC was synthesized with a low level of impurities.
Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of WO3 and spherical PMMA of 20 vol% were frozen at −25 oC and dried for the sublimation of the camphene. The green bodies were heat-treated at 400 oC for 2 h to decompose the PMMA; then, sintering was carried out at 1200 oC in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about 400 oC, and WO3 was reduced to metallic W at 800 oC without any reaction phases. The sintered bodies with WO3-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.
콩나물과 같은 고섬유질 야채류의 동결건조 후 조직감 개선을 위한 전처리 방법을 연구한 결과 예비 열처리와 하 이드로콜로이드 및 당 용액 침지를 조합, 적용시 건조 후 조직수축이 개선되고 복원력이 향상 되었다. 100oC의 0.5%(w/w) 염화나트륨 용액에서 2분간 예비열처리한 다음 0.5% 알긴산나트륨과 1.0% 슈크로오스을 첨가한 상온의 용액에서 60분 교반 침지시 열수 복원 후 전반맛, 식감, 외관 등의 관능 품질이 100oC 물에서 1분간 예비 열처리 한 시료 보다 1.6점이나 더 우수하여 큰 개선 효과를 나타 내었으며, 기계적 측정치에서는 전처리 콩나물 줄기의 경 도값이 0.27 kgf로 가정 조리식의 0.26 kgf와 거의 근접한 수치를 보였다. 이러한 전처리 공정을 대파, 쑥갓, 고사리 등의 다양한 고섬유질 동결건조 야채류에 적용시 관능품질 및 복원력이 향상될 것으로 기대되므로 산업화에서 적용 가능성이 높다고 할 수 있다.