본 연구는 법무부에서 지정한 마약사범 전담교정시설의 마약사범을 대상으로 운영 할 수 있는 통합적 프로그램(회복이음 과정)을 구성하고 개발하여 그 효과성을 조사하 였다. 이를 위해 현장 전문가 및 마약재활 전공 교수 등의 TF 개발집단을 구성하였으 며 최근 마약재활 연구 동향과 담당자 및 수용자 인터뷰 등을 종합하여 160시간의 약 3개월의 통합적 프로그램의 매뉴얼을 구성하였다. 서울지역과 경상지역의 교도소 에서 실험집단 20명과 통제집단 20명을 선발하였으며 그 대상에 대한 사전・사후 차 이검증을 실시하였다. 그 결과 실험 집단에 있어 심리치료 프로그램 후 통계적으로 유 의한 효과가 나타났으며, 무처치 통제집단과 비교도 차이가 있었다. 추후 연구에서는 샘플을 확대하고, 질적 자료를 추가하여 프로그램의 효과성을 판단할 필요가 있으며 그 결과에 따라 프로그램을 보완 발전해야 할 필요도 있어 보인다. 몇 가지 제한점을 극복하고 프로그램의 질적 향상을 위해 이 도구의 적합성과 프로그램 내용의 구성에 대해서도 건강한 논의가 지속되어야 할 것이다.
This study aims to develop a Commercial Vehicle Integrated Traffic Safety System utilizing Connected Intelligent Transportation Systems (C-ITS) technology. This system provides functionalities for accident prevention and efficient traffic management through vehicle-to-vehicle and vehicle-to-infrastructure communications. The key findings suggest that the integrated system using C-ITS can offer functions for traffic safety and preliminary stages of autonomous driving. It is anticipated that by applying vehicle and Information and Communication Technology (ICT) technologies, traffic safety issues and driver convenience can be enhanced.
The study aim was to develop and test the effects of integrated simulation pertaining to patients with schizophrenia using a hypertensive crisis module for nursing students. Methods: This pilot study with seven undergraduate nursing students used a single group, pre-post test design. Integrated simulation pertaining to patients with schizophrenia using a hypertensive crisis module was developed based on the ADDIE model (i.e., Analysis, Design, Development, Implementation, and Evaluation), expert meetings with subject professors, a literature review, a preliminary survey, and focus group interviews. Data were collected and measured for general characteristics of the study participants, critical thinking disposition, problem-solving, clinical judgment, self-efficacy, simulation design, and simulation effectiveness. Qualitative contents were analyzed through focus group interviews. Results: No statistically significant differences were found in class design, critical thinking disposition, problem-solving, clinical judgment, and self-efficacy after applying the integrated simulation module. Based on the data obtained from the focus group interviews of study participants, the following four categories were established: “Integrating knowledge and applying it to practice,” “Nursing in unexpected situations,” “Challenged to be an expert,” and “Ensuring receptive and psychological safety in simulation practice.” Conclusion: An integrated simulation module was developed to integrate the nursing problems associated with individual subjects beyond the scope of one subject, and the effect was verified by applying it
Dry storage of nuclear fuel is compromised by threats to the cladding integrity, such as creep and hydride reorientation. To predict these phenomena, spent fuel simulation codes have been developed. In spent fuel simulation, temperature information is the most influential factor for creep and hydride formation. Traditional fuel simulation codes required a user-defined temperature history input which is given by separate thermal analysis. Moreover, geometric changes in nuclear fuel, such as creep, can alter the cask’s internal subchannels, thereby changing the thermal analysis. This necessitates the development of a coupled thermal and nuclear fuel analysis code. In this study, we integrated the 2D FDM nuclear fuel code GIFT developed at SNU with COBRA -SFS. Using this, we analyzed spent nuclear stored in TN-24P dry storage cask over several decades and identified conditions posing threats due to phenomena like creep and hydrogen reorientation, represented by the burnup and peak cladding temperature at the start of dry storage. We also investigated the safety zone of spent nuclear fuel based on burnup and wet storage duration using decay heat.
효율적인 산림관리와 경영이 이루어지기 위해서는 일정한 공간단위를 가지는 산림의 구획(Zoning)이 정의되어야 한다. 현재 국유림은 임・소반 기준으로, 공・사유림은 필지 단위를 기준으로 공간을 구획하여 활용하고 있다. 이러한 이원적인 공간구획체 계는 통일된 산림계획, 경영, 관리가 어려우며 장기적인 공간단위의 정보 구축과 생성, 관리에도 어려움을 끼칠 수 있다. 이에, 본 연구에서는 DEM(Digital Elevation Model) 기반으로 추출한 산줄기 유역을 소개하고 활용성 검토를 위해 현재 산림관리 단위인 임・소반도, 경영계획구, 산지/산림 관련 주제도와 중첩 분석을 수행하였다. 이를 통해 표준산림관리단위의 대안으로 제안한 각 규모별 산림유역 단위의 공간적 적합성을 검토하고 산림관리, 산림 디지털 공간자료 구축 및 관리 등의 분야에서 산줄기 내포 유역 기반 표준산림관리단위의 활용 방안을 제안하였다.
Laser scabbling has the potential to be a valuable technique capable of effectively decontaminating highly radioactive concrete surface at nuclear decommissioning sites. Laser scabbling tool using an optical fiber has a merits of remote operation at a long range, which provides further safety for workers at nuclear decommissioning sites. Furthermore, there is no reaction force and low secondary waste generation, which reduces waste disposal costs. In this study, an integrated decontamination system with laser scabbling tool was employed to test the removal performance of the concrete surface. The integrated decontamination system consisted of a fiber laser, remote controllable mobile cart, and a debris collector device. The mobile cart controlled the translation speed and position of the optical head coupled with 20 m long process fiber. A 5 kW high-powered laser beam emitted from the optical head impacted the concrete block with dimensions of 300 mm × 300 mm × 80 mm to induce explosive spalling on its surface. The concrete debris generated from the spalling process were collected along the flexible tube connected with collector device. We used a three-dimensional scanner device to measure the removed volume and depth profile.
Spent nuclear fuel temporary storage in South Korea is approximately 70% of total storage capacity as of the 4th quarter of 2022 amount is stored. In addition, according to the analysis of the Korean Radioactive Waste Society, saturation of nuclear power plant temporary storage is expected sequentially from 2031, and accordingly, the need for high-level radioactive waste disposal facilities has emerged. Globally, after the conclusion of the EU Taxonomy, for nuclear energy in order to become an ecofriendly energy, it is necessary to have a high-level radioactive waste disposal site and submit a detailed operation plan for high-level radioactive waste disposal site by 2050. Finland and Sweden have already received permission for the construction of high-level radioactive waste disposal facilities, and other countries, such as Switzerland, Japan, the United States, and Canada, are in the process of licensing disposal facilities. In order to establish a repository for high-level radioactive waste, the performance and safety analysis of the repository must be conducted in compliance with regulatory requirements. For safety analysis, it needs a collection of arguments and evidence. and IAEA defined it as ‘Safety case’. The Systematic method, which derives scenarios by systematizing and combining possible phenomena around the repository, is widely used for developing Safety case. Systematic methods make use of the concept of Features, Events and Processes (FEP). FEP identifies features that affect repository performance, events that can affect a short period of time, and processes that can have an impact over a long period of time. Since it is a characteristic of the Systematic method to compose a scenario by combining these FEP, the Systematic method is the basic premise for the development of FEP. Completeness is important for FEP, and comprehensiveness is important for scenarios. However, combining all the FEP into one scenario is time-consuming and difficult to ascertain the comprehensiveness of the scenario. Therefore, an Integrated FEP list is being developed to facilitate tracking between FEP and scenarios by integrating similar FEP. In this study, during the integrated FEP development process, a method for utilizing experts that can be used for difficult parts of quantitative evaluation and a quantitative evaluation process through the method were presented.
The deep geologic repository (DGR) concept is widely accepted as the most feasible option for the final disposal of spent nuclear fuels. In this concept, a series of engineered and natural barrier systems are combined to safely store spent nuclear fuel and to isolate it from the biosphere for a practically indefinite period of time. Due to the extremely long lifetime of the DGR, the performance of the DGR replies especially on the natural geologic barriers. Assessing the safety of the DGR is thus required to evaluate the impacts of a wide range of geological, hydrogeological, and physicochemical processes including rare geological events as well as present water cycles and deep groundwater flow systems. Due to the time scale and the complexity of the physicochemical processes and geologic media involved, the numerical models used for safety evaluation need to be comprehensive, robust, and efficient. This study describes the development of an accessible, transparent, and extensible integrated hydrologic models (IHM) which can be approved with confidence by the regulators as well as scientific community and thus suitable for current and future safety assessment of the DGR systems. The IHM under development can currently simulate overland flow, groundwater flow, near surface evapotranspiration in a modular manner. The IHM can also be considered as a framework as it can easily accommodate additional processes and requirements for the future as it is necessary. The IHM is capable of handling the atmospheric, land surface, and subsurface processes for simultaneously analyzing the regional groundwater driving force and deep subsurface flow, and repository scale safety features, providing an ultimate basis for seamless safety assessment in the DGR program. The applicability of the IHM to the DGR safety assessment is demonstrated using illustrative examples.
The Comprehensive Analyzer of Real Estimation for spent fuel POOL (CAREPOOL) has been developed for evaluating the thermal safety of a spent nuclear fuel pool (SFP) during the normal and accident conditions. The management of spent nuclear fuel function provides a management tool for spent nuclear fuel in the SFP. The fuel assemblies both in SFP and reactor side can be shown graphically in the screen. The loading sequence into transfer cask can be checked respectively in the CAREPOOL. A basic heat balance equation was used to estimate the SFP temperature using the heat load calculated in the previous step. The characteristics of typical SFPs and associated cooling systems at reactor sites in the Korea were applied. Accident simulation like station black out leading to loss of SFP cooling or inventory is possible. Emergency cooling water injection pipe installed subsequent to the events at Fukushima 2011 is also modeled in this system. The CAREPOOL provides four main functions- management of spent nuclear fuel, decay heat calculation by ORIGEN-S code, estimation of the time to boil/fuel uncovering by thermal-hydraulics calculations, fuel selection for periodic spent fuel transferring campaign. All of these are integrated into the GUI based CAREPOOL system. The CAREPOOL would be very beneficial to nuclear power plant operator and trainee who have responsibility for the SFP operation.
코로나19라는 전 지구적 위기 발생 이후 지속가능발전목표(SDGs) 관 련 논의에 새로운 접근이 요구되었다. 특히 재원 발굴, 정책 효과성 문제 해결을 위한 개발 파트너십 확대 필요성이 논의되면서 인적·물적 자원, 기술을 보유한 기업이 주요 행위자로 대두되었지만 SDGs 이행 과정에서 기업의 역할에 대한 학문적 논의는 부족하다. 본 연구는 개발 파트너십 의 개념과 등장 배경, 기업이 주목받는 원인을 소개하고, 기업의 사회적 책임(CSR)을 국제개발협력 관점에서 분석하여 개발파트너십 확대에 관한 이론적 근거를 밝히고자 하였다. 주주 중심론, 이해관계자 중심론, 기업 시민론적 관점을 통합한 이론적 분석틀을 토대로 기업의 ESG와 SDGs의 연계를 제안하여 개발파트너십 확대에 관한 정책적 함의를 도출하였다. 기업이 개발 파트너십에 능동적으로 참여하기 위해서는 SDGs 이행참여 를 통한 ESG 성과 향상이 ESG 투자 확대를 유발한다는 주주 중심론, 긍정적인 기업 이미지를 창출한다는 이해관계자 중심론, 기업의 ESG 목 표와 SDGs의 연계가 국제규범과의 정합도를 향상시킨다는 기업시민론적 논의를 통합하여 기업에게 제공할 유인책을 고려할 필요가 있다.
Korea faces decommissioning the nation’s first commercial nuclear power plant, the Kori-1 and Wolseong-1 reactors. In addition, other nuclear power plants that will continue to operate will also face decommissioning over time, so it is essential to develop independent nuclear facility decommissioning and site remediation technologies. Among these various technologies, soil decontamination is an essential not only in the site remediation after the decommissioning of the highly radioactive nuclear facility, but also in the case of site contamination caused by an accident during operation of the nuclear facility. But the soil, which is a porous material, is difficult to decontaminate because radionuclides are adsorbed into the pores. Therefore, with the current decontamination technology, it is difficult to achieve the two goals of high decontamination efficiency and secondary waste reduction at the same time. In this study, a soil decontamination process with supercritical carbon dioxide as the main solvent was presented, which has better permeability than other solvents and is easy to maintain critical conditions and change physical properties. Through prior research, a polar chelating ligand was introduced as an additive for smooth extraction reaction between radionuclides present as ions in soil and nonpolar supercritical carbon dioxide. In addition, for the purpose of continuity of the process, a candidate group of auxiliary solvents capable of liquefying the ligand was selected. In this research evaluated the decontamination efficiency by adding the selected auxiliary solvent candidates to the supercritical carbon dioxide decontamination process, and ethanol with the best characteristics was selected as the final auxiliary solvent. In addition, based on the decontamination effect under a single condition of the auxiliary solvent found in the Blank Test process, the possibility of a pre-treatment leaching process using alcohol was tested in addition to the decontamination process using supercritical carbon dioxide. Finally, in addition to the existing Cs and Sr, the possibility of decontamination process was tested by adding U nuclides as a source of contamination. As a result of this research, it is expected that by minimizing secondary waste after the process, waste treatment cost could be reduced and the environmental aspect could be contributed, and a virtuous cycle structure could be established through reuse of the separated carbon dioxide solvent. In addition, adding its own extraction capacity of ethanol used for liquefaction of solid-phase ligands is expected to maximize decontamination efficiency in the process of increasing the size of the process in the future.
A large amount of concrete radioactive waste is generated during the decommissioning of nuclear facilities, including nuclear power plants, and it is expected that the radioactive waste management expenses will be huge. In order to reduce the concrete radioactive waste, a decontamination or removal process is required, but working on concrete may present a risk of worker exposure in a high-radioactive space. Therefore, in this study, a remote control integrated decontamination equipment that can reduce concrete radioactive waste and ensure the safety of workers during the concrete decontamination process in a high-radioactive space was developed. The integrated decontamination equipment consists of remote movement, automatic surface contamination measurement, automatic surface decontamination and debris/dust removal systems. The remote movement system generates ‘mapping data’ of topographic features for the work space and ‘location data’ that coordinates the location of the integrated decontamination equipment through LiDAR (Light Detection and Ranging) sensor and SLAM (Simultaneous Localization And Mapping) technique. The user can check the location of the integrated decontamination equipment through ‘location data’ outside the work space, and can move it by remote control through wired/wireless communication. The automatic surface contamination measurement system uses a radiation detector and an automatic measurement algorithm to generate ‘surface measurement data’ based on the measurement distance interval and measurement time set by the user. ‘Surface measurement data’ is combined with ‘location data’ to create a visualized map of radioactive contamination, and users can intuitively realize the location and degree of contamination based on the map. The automatic surface decontamination system uses a laser and an automatic removal algorithm to decontaminate the concrete surface. Concrete debris and dust generated during this process were collected by the debris/dust removal system, minimizing waste generation and radiation exposure due to secondary pollution. The integrated decontamination equipment developed through this study was applied with technologies that reduced radioactive concrete waste and ensured the safety of workers. If technology verification and on-site applicability review are performed using concrete specimens simulating nuclear power plant or similar environments, it is reasoned to contribute to the domestic and overseas decommissioning industry.
The reliable information on the hydraulic characteristics of rock mass is one of the key site factors for design and construction of deep subsurface structures such as geological radioactive nuclear waste disposal repository, underground energy storage facility, underground research laboratory, etc. In order to avoid relying on foreign field test technology in future projects, we have independently designed and made integrated type main frame, 120 bar waterproof downhole sonde, and 1,200 m wireline cable winch through a series of R&D activities. They are core apparatuses of the Deep borehole Hydraulic Test System (DHTS). Integration of individual test equipment into a single main frame allows safe and efficient work in the harsh field condition. The DHTS was developed aiming primarily for constant pressure (head) injection test and pulse test in deep impermeable rock mass. The maximum testing depth of the DHTS is about 1,050 m from the surface. Using this system, it is possible to make precise stepwise control of downhole net injection pressure in less than 2.0 kgf/cm2 with dual hydraulic volume controller and also to inject and measure the very low flow rate below 0.01 l/min with micro flow rate injection/control module. Over the past two years, we have successfully completed more than 50 in situ hydraulic tests at 5 deep boreholes located in the Mesozoic granite and sedimentary rock regions in Korea. Among them, the deepest testing depth was more than 920 m. In this paper, the major characteristics of the DHTS are introduced and also some results obtained from the high precision field tests in the deep and low permeable rock mass environment are briefly discussed.
CYPRUS is a web-based waste disposal research comprehensive information management program developed by the Korea Atomic Energy Research Institute over three years from 2004. This program is stored as existing quality assurance documents and data, and the research results can be viewed at any time. In addition, it helps to perform all series of tasks related to the safety evaluation study of the repository in accordance with the quality assurance system. In the future, it is necessary to improve the user convenience by clarifying the relationship between FEP and scenarios and upgrading output functions such as visualization and automatic report generation. This purpose of this study is to research and develop the advanced program of CYPRUS. This study is based on building FEP, DIM and scenario databases. It is necessary to develop an algorithm to analyze and visualize the FEP, DIM and scenario relationship. This project is an integrated information processing platform for DB management and visualization considering user convenience. The first development goal is to build long-term evolutionary FEP, DIM, and scenarios as a database. The linkage by FEP item was designed in consideration of convenience by using a mixed delimiter of letters and numbers. This design provides information on detailed interactions and impacts between FEP items. Scenario data lists a series of events and characteristic change information for performance evaluation in chronological order. In addition, it includes information on FEP occurrence and mutual nutrition by period, and information on whether or not the repository performance is satisfied by item. The second development goal is to realize the relationship analysis and visualization function of FEP and scenario based on network analysis technique. Based on DIM, this function analyzes and visualizes interactions between FEPs in the same way as PID, RES, etc. In addition, this function analyzes FEP and DIM using network analysis technique and visualizes it as a diagram. The developed platform will be used to construct and visualize the FEP DB covering research results in various disposal research fields, to analyze and visualize the relationship between core FEP and scenarios, and finally to construct scenarios and calculation cases that are the evaluation target of the comprehensive performance evaluation model. In addition, it is expected to support the knowledge exchange of experts based on the FEP and scenario integrated information processing platform, and to utilize the platform itself as a part of the knowledge transfer system for knowledge preservation.
Climate change has severely impacted food security and agricultural productivity in Africa. The scarcity of rains and the severe drought affecting the Sub-Saharan and the horn of Africa have impoverished the soil, and water resources, and have caused the death of livestock in countries like Sudan, Ethiopia, Kenya, Niger, and etc. On the other hand, the usage of chemical fertilizers for soil and crop nutrients is becoming an economic and environmental burden for African farmers. Thus, the necessity to implement sustainable agricultural technics to maintain and improve soil fertility by applying natural nutrients obtained from livestock manure while livestock is fed with crop residues in a single agricultural area. Although this farming system offers environmental and economic benefits to farmers, particularly in the rural and semi-urban areas, its implementation is very low in Africa because of: 1) constant migration of herders in the search of green pasture for livestock, making the collection of manure difficult, 2) religious and traditional beliefs considering animal waste as not being pure to be applied on crops, 3) conflicts between herders and farmers over the control of water resources and arable lands, making the cohabitation of livestock and crops in one farmland unlikely, and 4) the habit of crop residues burning, which is not just harmful to the environment but also a waste of natural livestock fed. Based on the reviewed literature, the Korea-Africa Food and Agriculture Cooperation Initiative (KAFACI) plans to develop and implement an integrated crop-livestock project in KAFACI member countries with the mission 1) to diffuse the importance of using natural nutrients for improving soil fertility and enhancing crop and livestock productivity in Africa, 2) to train researchers and farmers on new technologies for manure treatments, 3) to demonstrate the benefits of using livestock manure for soil fertility, crops nutrients, while using crop residues as livestock nutrients, and 4) contribute to enhancing sustainable agriculture in Africa through the reduction of greenhouse gas by reducing livestock’s waste and crop residues burning.
It is important to ensure worker’s safety from radiation hazard in decommissioning site. Real-time tracking of worker’s location is one of the factors necessary to detect radiation hazard in advance. In this study, the integrated algorithm for worker tracking has been developed to ensure the safety of workers. There are three essential techniques needed to track worker’s location, which are object detection, object tracking, and estimating location (stereo vision). Above all, object detection performance is most important factor in this study because the performance of tracking and estimating location is depended on worker detection level. YOLO (You Only Look Once version 5) model capable of real-time object detection was applied for worker detection. Among the various YOLO models, a model specialized for person detection was considered to maximize performance. This model showed good performance for distinguishing and detecting workers in various occlusion situations that are difficult to detect correctly. Deep SORT (Simple Online and Realtime Tracking) algorithm which uses deep learning technique has been considered for object tracking. Deep SORT is an algorithm that supplements the existing SORT method by utilizing the appearance information based on deep learning. It showed good tracking performance in the various occlusion situations. The last step is to estimate worker’s location (x-y-z coordinates). The stereo vision technique has been considered to estimate location. It predicts xyz location using two images obtained from stereo camera like human eyes. Two images are obtained from stereo camera and these images are rectified based on camera calibration information in the integrated algorithm. And then workers are detected from the two rectified images and the Deep SORT tracks workers based on worker’s position and appearance between previous frames and current frames. Two points of workers having same ID in two rectified images give xzy information by calculating depth estimation of stereo vision. The integrated algorithm developed in this study showed sufficient possibility to track workers in real time. It also showed fast speed to enable real-time application, showing about 0.08 sec per two frames to detect workers on a laptop with high-performance GPU (RTX 3080 laptop version). Therefore, it is expected that this algorithm can be sufficiently used to track workers in real decommissioning site by performing additional parameter optimization.