검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 62

        9.
        2023.11 구독 인증기관·개인회원 무료
        I-129 is one of the imporant nuclides that must be determined in the disposal process of radioactive waste in many countries. This radionuclide emits gamma-ray and x-ray photons within the energy range of 29 to 39 keV, consequently, an x-ray detector with high resolution performance is required for the analysis of I-129 activity. An n-type coaxial HPGe detector exhibits higher efficiency characteristics compared to a planar-type HPGe detector, however, its resolution is lower than a planar type. So it is difficult to completely deconvolute and fit the gamma-ray and xray peaks in the spectrum using a general gamma-ray spectrum analysis program such as GammaVision. To address this problem, in a previous study introduced the developed algorithm for the fitting and analysis of I-129 gamma-ray and x-ray spectum by fixing their emission ratios. In this study, we improved the algorithm by considering the variation of the efficiency in the HPGe spectrum, which reflects the actual HPGe crystal condition. And algorithm tests were performed using measured I-129 sample spectra with interfering nuclides acting as background curve are introduced.
        10.
        2023.11 구독 인증기관·개인회원 무료
        Wasteform is the first barrier to prevent radionuclide release from repositories into the biosphere. Since leaching rates of nuclides in wasteform significantly impact on safety assessment of the repository, clarifying the leaching behavior is critical for accurate safety assessment. However, the current waste acceptance criteria (WAC) of the Gyeongju repository only evaluates leachability indexes for Cs, Sr, and Co, which are tracers for nuclear power plant waste streams. Furthermore, ANS 16.1, the current leaching test method used in WAC, applies deionized water (DI) as leachant. However, the interactions between wasteform and groundwater environment in the repository may not be reflected. Therefore, it is necessary to review the current leaching test method and nuclides that may require the extra evaluation of leachability beyond the Cs, Sr, and Co. Tc and I are key nuclides contributing to high radioactive dose in safety assessment due to their high mobility and low retardation factor. The groundwater conditions within the repository, such as pH and Eh significantly affect the chemical form of Tc and I. For example, Tc in H2O system tends to form hydroxide precipitates in neutral pH condition and TcO4 - in strong alkaline environments according to the Pourbaix diagram. In case of I, it generally exists in the form of I-, while it exists as IO3 - as Eh increases. Although the current leaching test at the Gyeongju repository applies DI as a leachant, the actual repository is expected to have a highly alkaline environment with a substantial amount of various ions in the groundwater. Consequently, the leaching behavior in the ANS 16.1 test and the actual disposal condition is different. Thus, it is necessary to analyze the leaching behavior of Tc and I with reflecting the actual disposal environment. In this study, the leaching behavior of Tc and I is investigated by following ANS 16.1 leaching test method. The solidified waste specimens containing 10 mmol of Re and I were manufactured with cement, which is widely used as a solidification material. Re was applied instead of Tc, which has similar chemical behavior to Tc, and NH4ReO4 and NaI were used as surrogates for Re and I. As a leachant, deionized water and cement-saturated groundwater were prepared and the concentration of nuclides in the leachant is analyzed by ICP-OES. As the result of this study, experimental data can be applied to improve the WAC and disposal concentration standards in the future.
        11.
        2023.11 구독 인증기관·개인회원 무료
        The spent fuels derived from the nuclear reactor facilities may be finally disposed in a deep underground below 500 m. It majorly has uranium with minor iodine, which is a typical anionic radionuclide. In particular, radioiodine has higher mobility from its spent fuel source. It has been well known that it could freely pass through a compacted bentonite that is one of underground engineering barriers that are used to retard some nuclide’s migration from the spent fuel. We installed a small laboratory apparatus in an anaerobic glove box imitating such an underground repository and evaluated the iodine mobility in compacted bentonites with or without copper. Some copper-bearing bentonites were prepared in two types, a copper ion-exchanged form and a copper nanoparticle-mixed one. In our study, we tried to find an effect of sulfate that has an ability to retard mobile iodine from the compacted bentonite for a long-term period. Conclusively, we found an effective way to limit the iodine release from the compacted bentonite. This condition can be achievable by exchanging the bentonite interlayer cations with copper ions or by simply mixing copper nanoparticles with bentonite powder. In those cases, soluble iodine can be easily immobilized as a solid phase (i.e., marshite (CuI)) by combining with copper via the geochemical role of sulfate and indigenous SRB (sulfate reducing bacteria) of bentonite.
        12.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The emission of off-gas streams from used fuel recycling is a concern in nuclear energy usage as they contain radioactive compounds, such as, 3H, 14C, 85Kr, 131I, and 129I that can be harmful to human health and environment. Radioactive iodine, 129I, is particularly troublesome as it has a half-life of more than 15 million years and is prone to accumulate in human thyroid glands. Organic iodides are hazardous even at very low concentrations, and hence the capture of 129I is extremely important. Dynamic adsorption experiments were conducted to determine the efficiency of sodium mordenite, partially exchanged silver mordenite, and fully exchanged silver mordenite for the removal of methyl iodide present at parts per billion concentrations in a simulated off-gas stream. Kinetic analysis of the system was conducted incorporating the effects of diffusion and mass transfer. The possible reaction mechanism is postulated and the order of the reaction and the values of the rate constants were determined from the experimental data. Adsorbent characterization is performed to investigate the nature of the adsorbent before and after iodine loading. This paper will offer a comprehensive understanding of the methyl iodide behavior when in contact with the mordenites.
        5,500원
        13.
        2023.05 구독 인증기관·개인회원 무료
        Korea Atomic Energy Research Institute (KAERI) is planning to disposal of the radioactive contaminated cement waste form to the final disposal facility. The final disposal facility require evaluation of immersion, compressive strength, and radionuclide inventory of radioactive wastes to meet the acceptance criteria for safe disposal. According to the LILW acceptance criteria of the Nuclear Safety and Security Commission ok Korea (NSSC), the disposal limit radioactivity of 129I (3.70×101 Bq/g) is lower than other radionuclides. 129I emits low energy as its disposal limit is low, so it is difficult to analyze in the presence of 137Cs and 60Co which emit high energy. Therefore, it is essential to an accurately separate and analyze iodine in radioactive waste. In this study, we focused on the determination of 129I in cement waste form containing 137Cs, 60Co. We added 1 g of 129I(11.084 Bg), 137Cs(1,300 Bq) and 60Co(402 Bq) to cement waste form, respectively. The separation of 129I in cement waste form was carried out using an acid leaching method. And, we confirmed the specific activity of 137Cs and 60Co at each separation step. It was observed that an acid leaching method showed the remove efficiency 137Cs(99.97%) and 60Co(99.94%), respectively. In addition, 129I was also analyzed at approximately 96.44% in simulated contaminated cement waste form. In conclusion, through this experiment, it was confirmed that 129I could be successfully separated and analyzed by using the acid leaching method in cement waste form containing excessive 137Cs and 60Co.
        14.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive waste generated during decommissioning of nuclear power plants is classified according to the degree of radioactivity, of which concrete and soil are reclassified, some are discharged, and the rest is recycled. However, the management cost of large amounts of concrete and soil accounts for about 40% of the total waste management cost. In this study, a material that absorbs methyl iodine, a radioactive gas generated from nuclear power plants, was developed by materializing these concrete and soil, and performance evaluation was conducted. A ceramic filter was manufactured by forming and sintering mixed materials using waste concrete, waste soil, and by-products generated in steel mills, and TEDA was attached to the ceramic filter by 5wt% to 20wt% before adsorption performance test. During the deposition process, TEDA was vaporized at 95°C and attached to a ceramic filter, and the amount of TEDA deposition was analyzed using ICP-MS. The adsorption performance test device set experimental conditions based on ASTM-D3808. High purity nitrogen gas, nitrogen gas and methyl iodine mixed gas were used, the supply amount of methyl iodine was 1.75 ppm, the flow rate of gas was 12 m/min, and the supply of water was determined using the vapor pressure value of 30°C and the ideal gas equation to maintain 95%. Gas from the gas collector was sampled to analyze the removal efficiency of methyl iodine, and the amount of methyl iodine detected was measured using a methyl iodine detection tube.
        15.
        2023.05 구독 인증기관·개인회원 무료
        Many countries have used nuclear power to generate electricity. Uranium-235, which is used as fuel in nuclear power plants, produces many fission products. Among them, iodine-129 is problematic due to its long half-life (1.57×107 years) and high diffusivity in the environment. If it is released into the environment without any treatment, it could have a major impact on humans and ecosystems. Therefore, it must be treated into a stable form through capture and solidification. Iodine can be captured in the form of AgI through silver-loaded zeolite filters in off-gas treatment processes. However, AgI could be decomposed in the reducing atmosphere of groundwater, so it must be converted into a stable form. In this study, Al2O3, Bi2O3, PbO, V2O5, MoO3, or WO3 were added to the iodine solidification matrix, AgI-Ag2O-TeO2 glass. The glass precursors were mixed to the appropriate composition and placed in an alumina crucible. After heat treatment at 800°C for 1 hour, the melt was quenched in a carbon crucible. The leaching behavior and thermal properties of the glass samples were evaluated. The PCT-A test for leaching evaluation showed that the normalized releases of all elements were below 2 g/m2, which satisfied the U.S. glass wasteform leaching regulations. Diffrential scanning calorimetry (DSC) was performed to evaluate the thermal properties of all glass samples. The addition of MoO3 or WO3 to the AgI-Ag2O-TeO2 glass increased the glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability. The similar relative electro-static filed values of MoO3, and WO3 which are approxibately three times that of the glass network former TeO2, could provide sufficient force to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M=V, Mo, W) links. The high electrostatic forces of Mo and W increased the glass network cohension and prevented the crystallization of the glass.
        16.
        2023.05 구독 인증기관·개인회원 무료
        The Ag0-containing sorbents synthesized by Na, Al, and Si alkoxides have higher maximum iodine capture capacity and textural properties than zeolite-based Ag0-containing sorbents. However, these sorbents were prepared in the form of granules via a step for cutting cylindrical alcogels. Since asmade sorbents decreased packing density, they must be additionally crushed and then classified into an appropriate size for increasing packing density. The bead formation in the step of sol-gelation could bring about the simplification of sorbent preparation process and an improvement of packing density. In the Na, Al, and Si alkoxides as starting materials, sol solution was hydrophilic and lower density than vegetable oil, which transformed sol droplets to sol-gel beads. Thus, in these precursors, sol droplets, which must be sprayed by single nozzle placed at bottom side of oil column, can rise up through oil column. Acetic acid (HOAc) was used as the catalyst for the hydrolysis of Na alkoxide (TEOS) and gelation of the Na+AlSi-OH alcosol. For obtaining sol-gel beads, experiments were performed by the flowrate change of sol solution and HOAc at different nozzle sizes using soybean oil column of 1 m in length. At a sol/HOAc flowrate ratio of 3.85, some Na+AlSi-OH alcogel beads were obtained. After the Ag/Na ion-exchange, Ag content in Ag+AlSi-OH hydrogel was low due to reaction between Na+ and HOAc during sol-gelation and aging step. The Ag+AlSi-OH hydrogel with high Ag content could be prepared by Na addition. After the solvent exchange and drying at ambient pressure, the bead sorbents had higher Ag0 content and larger pore size than granular sorbents. However, further experiments are needed to increase yield rate in bead sorbent.
        17.
        2022.10 구독 인증기관·개인회원 무료
        Hydrogen-bonded organic frameworks (HOFs) are a new type of porous crystalline material that are constructed by intermolecular hydrogen bonding of organic building blocks to form twodimensional (2D) and three-dimensional (3D) crystalline networks. High-quality HOF single crystals are easily grown for direct superstructure analysis using single crystal X-ray diffraction, which is essential for revealing the relationship between structure and properties. The unique advantages of HOF, such as high crystallinity, porosity and fast regeneration, have allowed it to be used in a variety of applications including catalysis and gas separation. Squaric acid (SQA) is a non-carboxylic, organic acid with proton donor and acceptor ability which is known to take on a variety of coordination modes with metal ions. Pyrazine is a six-membered aromatic heterocycle bearing two nitrogen atoms, which has sp2 hybridized C atoms with C-H hydrogen bonds. This work describes the synthesis and structural characteristics of HOF based on squaric acid and pyrazine. Based on single crystal X-ray diffraction data, this MOF crystallizes in the triclinic P-1 space group. Each asymmetric unit is composed of H2SQ and pyrazine. All squaric acid molecules share one H atom with the N atom of pyrazine molecules. The layer distance between nearby O atoms from squaric acid in different layers equals 5.29 Å. Also, our HOF showed high adsorption capacity the during experiments. The composition and comparative characteristics of HOF are given using SCXRD, PXRD, SEM and UV-vis.
        18.
        2022.10 구독 인증기관·개인회원 무료
        The massive amount of radioactive waste will generated during decommissioning of nuclear. Among the radioactive waste from these disposal process, 50-55 million tons of concrete waste are included. For safe disposal, it is very important to accurately analyze the concentration of radionuclides, especially 129I and 131I, contaminated concrete. 129I, a long-lived radioisotope of iodine (t1/2=1.57 × 107 y), and 131I (t1/2=8.04 d) are generated from the fission of uranium in nuclear reactors. In Korea, according to the Nuclear Safety and Security Commission (NSSC) radioactive clearance level guide, the limit for radioactive clearance level of 129I is less than 0.01 (Bq/g). Iodine can be absorbed, accumulate in organisms, and exhibit low energy emission compared with cesium, and cobalt. Therefore, it is essential to an accurately separate and analyze iodine radioactive waste. In this study, we focused on the determination of iodine in simulated cement waste form containing KI for the recovery of iodine. We performed cement waste form sieved through a different particle size (0.5 mm < ɸ < 6.35 mm). For the separation of iodine from solid samples with low iodine content, such as soil, sediment, and cement, for sample decomposition associated with solvent extraction using CHCl3 for separation of iodine from the matrix. The separation of iodine in cement waste particles was therefore carried out using an acid leaching method using KI containing cement particles. We observed that cement particle size decreased at 6.35 mm to 0.5 mm with iodine yield decrease at 0.840±0.011 to 0.582±0.010. Thus, in this study, the acid leaching method enables to determination Iodine in cement.
        19.
        2022.10 구독 인증기관·개인회원 무료
        Ag-containing aluminosilicate sorbents capable of capturing iodine were prepared by sol-gelation from Na, Al, and Si alkoxides using co-solvent exchange, Ag/Na ion exchange, solvent exchange, and ambient-pressure drying. The Na+AlSi-OH gel was prepared using sodium methoxide (NaOMe): aluminum tri-sec-butoxide (Al(OsBu)3): tetraethyl orthosilicate (TEOS) molar ratios of 1.05:1:1, 1.3:1.1:1, 1.5:1.3:1. The solvent effect on textural properties such as Brunauer-Emmett-Teller (BET) surface areas and pore size distributions and Ag0 particle sizes was investigated using water with high surface tension, isopropanol and n-heptane with low surface tension. The BET surface area, average pore size, and cumulative pore volume for sorbents strongly increased with decreasing surface tension of solvents and increasing Al/Si atomic ratios. In addition, Ag0 particle sizes increased with decreasing surface tension of solvents.
        20.
        2022.05 구독 인증기관·개인회원 무료
        Uranium-235, used for nuclear power generation, has brought radioactive waste. It could be released into the environment during reprocessing or recycling of the spent nuclear fuel. Among the radioactive waste nuclides, I-129 occurs problems due to its long half-life (1.57×107 y) with high mobility in the environment. Therefore, it should be captured and immobilized into a geological disposal system through a stable waste form. One of the methods to capture iodine in the off-gas treatment process is to use silver loaded zeolite filter. It converts radioactive iodine into AgI, one of the most stable iodine forms in the solid state. However, it is difficult to directly dispose of AgI itself in an underground repository because of its aqueous dissolution under reducing condition with Fe2+. It must be immobilized in the matrix materials to prevent release of iodine as a result of chemical reaction. Among the matrix glasses, silver tellurite glass has been proposed. In this study, additives including Al, Bi, Pb, V, Mo, and W were added into the silver tellurite glass. The thermal properties of each matrix for radioactive iodine immobilization were evaluated. The glasses were prepared by the melt-quenching method at 800°C for 1 h. Differential scanning calorimetry (DSC) was performed to evaluate the thermal properties of the glass samples. From the study, the glass transition temperature (Tg) was increased by adding additives such as V2O5, MoO3, or WO3 in the silver tellurite glass. The relative electro-static field (REF) values of V2O5, MoO3, and WO3 are about three times higher than that of the glass network former, TeO2. It could provide sufficient electro-static field (EF) to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M = V, Mo, W) links. Therefore, the addition of V2O5, MoO3, or WO3 reinforced the glass network cohesion to increase the Tg of the glass. The addition of MoO3or WO3 in the silver tellurite glass increased Tg and crystallization temperature (Tc) with remaining the glass stability.
        1 2 3 4