The purpose of this study is to analyze the characteristic of quality attributes of smart hotels by using a SERVQUAL-IPA model, focusing on Chinese, which has the most proactive approach for the adoption of smart hotel system. Toward this goal, six quality factors—tangibles, reliability, assurance, responsiveness, empathy, and playfulness—were extracted through factor analysis, and IPA was used to appraise the degree of importance and satisfaction for each quality attribute. As a result of the SERVQUAL-IPA model, quality attributes were categorized into four groups of 'keep up the good work,' 'possible overkill,' 'low priority,' and 'concentrate here.'. Furthermore, it was concluded that there is a need to focus on the following elements: ‘smart devices can assist customers in emergency situations’, ‘when the room control system identifies customer needs, the staff can provide prompt service’, ‘development and improvement of mobile applications that enable customers to control room amenities’, ‘regular maintenance for smart devices’, and ‘providing data-driven personalized recommendations through customer activity data analysis’.
Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson’s ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.
PURPOSES : This study aims to provide quantitative profile values for the objective evaluation of concrete surface profile (CSP) grades in concrete structures. The main aims are to quantify the CSP grade required for concrete surface pretreatment and proposing a more suitable CSP grade for structural maintenance. METHODS : Initially, the challenges in measuring concrete surface profiles were outlined by analyzing pretreatment work and profile samples of concrete pavements. Theoretical foundations for quantifying concrete surface roughness were established, and regression models including linear regression, cubic regression, and log regression were selected. Additionally, the interquartile range anomaly removal technique was employed to preprocess the data for regression modeling. RESULTS : Concrete CSP profiles were measured through indoor tests, and the measured data were quantified. Linear regression, cubic regression, and log regression models were applied to each CSP grade for comparative analysis of the results. Furthermore, comparative studies were conducted through adhesion strength tests based on the CSP grade. CONCLUSIONS : Our results are expected to establish objective standards for the pretreatment stage of concrete repair and reinforcement. The derived reference values can inform standards for the restoration and reinforcement of concrete structures, thereby contributing to performance improvement. Moreover, our results may serve as primary data for the repair and reinforcement of various concrete structures such as airports, bridges, highways, and buildings.
본 연구에서는 대학 교수학습센터에서 제공하는 학습지원 프로그램의 성과를 종합적으로 평가하기 위한 BSC(Balanced Score Card) 기반의 성과평가 모형을 개발하고 적용하는 데 있다. 문헌 연구를 통해 성과평 가의 이론적 배경을 조사하고, BSC 모형을 교육 분야에 맞게 수정하여 학습지원 프로그램에 적용 가능한 평가 체계를 설계하였다. 재무, 수요 자, 운영, 프로그램의 네 가지 관점에서 성과평가 지표를 설정하고, 이를 기반으로 대학의 다양한 학습지원 프로그램의 성과를 분석하였다. 분석 결과, 특정 프로그램들이 높은 성과를 보임을 확인하였으며, 동시에 개선 이 필요한 영역을 확인하였다. 개발된 BSC 기반 성과평가 모형은 대학 학습지원 프로그램의 다각도에서의 성과를 평가하는 데 유용하였으며, 프로그램의 강점과 개선점을 명확하게 확인할 수 있었다. 이 연구를 통 하여 대학 교수학습센터가 학습지원 프로그램의 질을 개선하고, 대학 교 육의 질적 향상에 기여하길 기대한다.
목적: 라이프스타일 행동에 반영된 가치체계를 측정하기 위한 Yonsei Lifestyle Profile-Values (YLP-V)의 구성타당도와 신뢰도를 검증하였다. 연구방법: 온라인 리서치 기관에 등록된 만 55세 이상의 지역사회 거주 중고령자 및 노인 300명을 대상으로 YLP-V를 사용하여 자료를 수집하였다. 수집된 자료는 기술통계, 차별기능문항, 요인분석을 실시하였다. 요인분석은 요인구조 추정을 위한 탐색적 요인분석과 4가지 경쟁모델(단일요인, 계층적 요인, 다차원 요인, 이중요인)에 대한 확인적 요인분석을 통해 비교하고 타당성을 확인하였다. 결과: 목표회전을 통한 탐색적 요인분석 결과, YLP-V의 활동(activity, 5문항), 관심(interest, 4문항), 의견 (opinion, 9문항)에서 목표행렬에서 0.4 이상의 부하량을 갖는 것을 확인하였다. 확인적 요인분석 결과, 이중요인 모델(χ2 = 164.58**, degree of freedom = 117, root mean square error of approximation = 0.05, standard root mean residual = 0.04, comparative fit index = 0.95, Turker Lewis index = 0.93)이 가장 우수하게 나타났다. 결론: 라이프스타일에서 미시적 접근이 가능한 YLP-V 개발 근거와 일관성 있는 요인구조를 확인하였다. 이는 YLP-V가 총 18문항의 활동, 관심, 의견에 대한 이중요인 구조로 타당성을 확인하였으며, 건강 라이프스타 일에서 행동에 반영된 가치체계 측정과 이해에서 활용될 수 있을 것이다.
Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.
Approximately 40,000 elevators are installed every year in Korea, and they are used as a convenient means of transportation in daily life. However, the continuous increase in elevators has a social problem of increased safety accidents behind the functional aspect of convenience. There is an emerging need to induce preemptive and active elevator safety management by elevator management entities by strengthening the management of poorly managed elevators. Therefore, this study examines domestic research cases related to the evaluation items of the elevator safety quality rating system conducted in previous studies, and develops a statistical model that can examine the effect of elevator maintenance quality as a result of the safety management of the elevator management entity. We review two types: odds ratio analysis and logistic regression analysis models.
In this study, we analyzed how the revenue water ratio(RWR) is affected by changes in conditions of the water supply area, such as the ratio of aging pipes, maintenance conditions, and revenue water. As a result of analyzing the impact of pipe aging and maintenance conditions on the RWR, it was confirmed that the RWR could be decreased if the pipe replacement project to improve the aging pipe ratio was not carried out and proper maintenance costs were not secured. It was also confirmed that an increase in the revenue water could be operated to facilitate the achievement of the project’s target RWR. In contrast, a decrease in the revenue water due to a population reduction could affect the failure of the target RWR. In addition to analyzing the causes of variation in the RWR, the calculation of estimated project costs was considered by using leakage reduction instead of RWR from recent RWR improvement project cost data. From this analysis, it was reviewed whether the project costs planned to achieve the target RWR of the RWR improvement project in A city were appropriate. In conclusion, the RWR could be affected by variations in the ratio of aging pipes, maintenance conditions, and revenue water, and it was reasonable to consider not only the construction input but also the input related to RWR improvement, such as leakage reduction, when calculating the project cost.
Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms—specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms—to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.
This study aimed to assess and determine the optimal model for predicting the full bloom date of ‘Fuji’ apples across South Korea. We evaluated the performance of four distinct models: the Development Rate Model (DVR)1, DVR2, the Chill Days (CD) model, and a sequentially integrated approach that combined the Dynamic model (DM) and the Growing Degree Hours (GDH) model. The full bloom dates and air temperatures were collected over a three-year period from six orchards located in the major apple production regions of South Korea: Pocheon, Hwaseong, Geochang, Cheongsong, Gunwi, and Chungju. Among these models, the one that combined DM for calculating chilling accumulation and the GDH model for estimating heat accumulation in sequence demonstrated the most accurate predictive performance, in contrast to the CD model that exhibited the lowest predictive precision. Furthermore, the DVR1 model exhibited an underestimation error at orchard located in Hwaseong. It projected a faster progression of the full bloom dates than the actual observations. This area is characterized by minimal diurnal temperature ranges, where the daily minimum temperature is high and the daily maximum temperature is relatively low. Therefore, to achieve a comprehensive prediction of the blooming date of ‘Fuji’ apples across South Korea, it is recommended to integrate a DM model for calculating the necessary chilling accumulation to break dormancy with a GDH model for estimating the requisite heat accumulation for flowering after dormancy release. This results in a combined DM+GDH model recognized as the most effective approach. However, further data collection and evaluation from different regions are needed to further refine its accuracy and applicability.
최근 지구 온난화의 영향으로 태풍의 파괴력이 증가함에 따라 부유식 해상풍력발전기의 막대한 유실과 붕괴에 대한 우려가 깊어지고 있다. 부유식 해상풍력발전기의 안전한 운영을 위해 새로운 형태의 탈착형 계류 시스템 개발이 요구되고 있다. 본 연구에서 고 려한 새로운 반잠수식 계류 풀리는 기존의 탈착형 계류 장치에 비해 계류 라인으로 부유식 해상풍력 터빈을 보다 쉽게 탈부착할 수 있도 록 고안되었다. 8MW급 부유식 해상풍력발전기에 적용 가능한 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 검토하기 위해 3D 프린터를 이용하여 축소구조모형을 제작하고, 이 모형에 대한 구조시험을 수행하였다. 축소 모형의 구조시험을 위해 3D 프린팅에 사 용된 ABS 소재의 인장 시편을 제작하고 인장시험을 수행하여 소재의 물성을 평가하였다. 인장시험에서 얻은 재료 특성과 축소모형 구조 시험과 동일한 하중 및 경계 조건을 적용하여 반잠수식 계류 풀리의 유한요소해석을 수행하였다. 유한요소해석을 통해 반잠수식 계류 풀 리의 구조적 취약 부분을 검토하였다. 반잠수식 계류 풀리의 주요 하중조건을 고려하여 구조모형시험을 수행하였으며, 재료의 최대인장 응력 이상이 발생하는 위치에 대해 유한요소해석과 시험 결과를 비교하였다. 유한요소해석과 모형시험의 결과로부터 작동조건에서는 Body와 Wheel의 연결부 구조가 취약한 것으로 파악되었고, 계류조건에서는 Body와 Chain stopper의 연결부 구조가 취약한 것으로 검토되었 다. 축소모형 구조시험에서 나타난 SMP의 구조 취약부는 구조해석의 결과와 일치하는 것으로 나타났다. 연구 결과를 통해 반잠수식 계류 풀리의 초기 설계에 대한 구조적 안전성을 실험적으로 검증할 수 있었다. 또한, 본 연구 결과는 상세설계 단계에서 반잠수식 계류 풀리의 구조 강도를 향상시키는데 유용하게 활용될 수 있을 것으로 판단된다.
본 연구는 K연구원의 상향식 R&D과제기획 차원의 신규 연구기획과제 선정 평가를 위한 평가도구 개발에 목적을 두고 진행하였다. 이를 위해 CIPP모형과 연구기획평가를 위한 선정평가 및 평가지표에 관한 선행연구를 중심으로 R&D과제기획 선정평가 항목과 문항을 개발 한 후, 2회에 걸친 델파이 조사를 실시하였다. 개발된 평가도구는 13명의 전문가를 대상으로 설문조사를 실시하여 내용타당도, 합의도 및 수렴도를 검증하였다. 최종 선정된 R&D과제기획 선정평가 도구는 8개 항목에 총 21개 문항으로, 상황평가 5 문항, 투입평가 2문항, 과정평가 8문항, 산출평가 6문항으로 구성되었다. 개발된 평가 도구는 상향식 기획 과정상의 문제점을 해소하고 연구자들의 기획역량을 제고하는 데 기여할 것이다. 또한, 선정 평가 시 평가에 대한 일관성과 효율성 제고에 기여할 것이다.
Online communities are identified as people gathering online and communicating through the internet to share ideas, objectives, goals, without any geographical boundary. The growth of user-generated content created in online communities has transformed the way consumers search for and share information, particularly in the hospitality industry. Particularly, in the restaurant and food sectors due to the intangible nature of hospitality services, online reviews play an important role on consumer decisions. Furthermore, online reviews on restaurants are not only informational but also, they impact consumers’ choices regarding restaurants. Consequently, the nature of such user-generated content that is produced at a high speed and is diverse and rich should be treated and understood. This study proposes the first tailored BERTopic model together with sentiment analysis based on pre-trained BERT model that takes advantage of its novel sentence embedding for creating interpretable topics into the analysis of restaurant online reviews to determine how the customers elaborate their criteria in the context of certain experiences. An exploratory analysis is presented involving a large-scale review data set of 261,531 restaurant online reviews from 4 different countries retrieved from the eWOM community thefork.com. A broad list of the topics discussed by customers post-dining in restaurants is built. Insights into the behavior, experience, and satisfaction of the customers across the different restaurants are discovered. This approach and findings are encouraging hospitality managers in understanding customers’ perception, through which applicable marketing can be developed to attract and retain potential customers.
본 연구는 Fuzzy-Delphi법과 DEMATEL-ANP법으로 경관평가 모형을 구축한 뒤 하북성 형태시 소재 칠리하(七裏河)를 사례로 실증 분석한 결과이다. Delphi법에 따른 1차 설문지를 이용하여 최초 54개 지표를 40개 지표로 줄인 후 전문가 Fuzzy-Delphi법에 따른 2차 설문지 및 데이터 처리 결과 모든 평가 지표는 수렴기준에 도달하였다. 평가지표 중간값이 임계값보다 낮은 지표를 삭제한 뒤 최종적으로 22개 지표를 중심으로 도시 하천 호안지역 경관 평가체계를 구성하였다. 도출된 모델은 치수, 친수, 이수, 보수 등 4개 방면의 기능분류이며, 다시 기능적 측면, 안전성 측면, 경관적 측면, 생태적 측면, 사 회경제적 측면 등 5가지 기준으로 유형화되었다. 평가지표 중 영향력이 큰 상위 5개 요인은 수역경관 (C11), 건설투자(C19), 식물피복률(C16), 호안의 친수성(C10), 시각적 조화(C9) 순이었다. 그러나 인문 경관의 다양성(C12)요인의 가중치가 최하위임을 볼 때 도시 하천의 호안경관과 인문경관은 거의 배 제된 상태이며, 자연경관과 수역경관의 상호작용에 더 많은 관심을 기울이고 있음이 확인되었다. 한편 도시 경관평가 체계에서 5개 준칙층의 순서는 경관 미학성> 생태성 > 사회경제성 > 기능성 > 안 전성 순으로 나타났는데 이는 도시 내 수로의 호안 지역 경관의 전체적인 경관 감지와 흡인력을 반영 한 결과로 평가되었다. 칠리하 호안구역의 종합적 경관 평가치는 70.93점으로 만족스러운 수준이지 만 익수사고에 대비한 구조시설(C6) 인문경관의 다양성(C12) 그리고 역사문화 풍습의 구현(C22) 항 목에 있어서는 시급한 개선이 필요한 것으로 밝혀졌다.
In the automobile manufacturing industry, lightweight design is one of the essential challenges to be solved fundamentally. The vehicle wheels are classified as safety related components as the main substructure of the vehicle. In this study, we illustrate a technique for selecting the appropriate number of spokes. Based on the basic model of the selected number of spokes, we propose a method to maintain stiffness and design lightweight using topology optimization software. Based on the basic model of the selected number of spokes, it was redesigned to be lightweight while maintaining stiffness by utilizing topology optimization software. By comparing and reviewing the structural analysis results of the basic model and the redesigned model, a design technique that can maintain structural safety and reduce wheel mass was proposed.
본 연구는 생후 12개월령의 염소를 사용하여 앞다리, 뒷 다리, 등심 및 갈비 부위로 분할하여 in vitro 소화실험을 통해 부위별 단백질 가수분해도 및 아미노산 조성을 조사 하였다. 이 때, 소고기 및 돼지고기의 분할육을 이용하여 염소고기와 비교, 분석하였다. 염소고기 분할육 중 뒷다리 (8.32%) 및 갈비(8.32%)가 가장 높게 단백질 가수분해도가 나타났으며, 염소고기의 갈비 부위는 갈비 분할육 중 가장 높은 단백질 가수분해율을 보였던 돼지고기(8.57%)와 유의 차가 없었다 (P>0.05). In vitro 소화 전에는 염소고기 분할 육 중 등심에서 글리신(11.03%)이, 앞다리에서 글루타민 (53.44%)이 다른 고기 종류 및 분할육들에 비해 유의적으 로 높은 비율로 포함된 것이 확인되었다(P<0.05). In vitro 소화 후에는 염소고기 갈비 부위에서 라이신(17.54%)이 가 장 높은 비율로 포함된 것으로 확인되었으며, 소 갈비 부 위보다 유의적으로 높았다(P<0.05). 본 연구는 염소고기 분 할육의 단백질 가수분해도 및 아미노산 조성을 제공하며 단백질 소화양상 및 생체 이용률을 평가하기 위한 기초 자 료로써 활용되어질 수 있을 것으로 사료된다.