검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 44

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzed the influence of ball size and process control agents on the refinement and dehydrogenation behavior of TiH2 powder. Powders milled using ZrO2 balls with diameters of 0.1 mm, 0.3 mm, and 0.3+0.5+1 mm exhibited a bimodal particle size distribution, of which the first mode had the smallest size of 0.23 μm for the 0.3 mm balls. Using ethanol and/or stearic acid as process control agents was effective in particle refinement. Thermogravimetric analysis showed that dehydrogenation of the milled powder started at a relatively low temperature compared to the raw powder, which is interpreted to have resulted from a decrease in particle size and an increase in defects. The dehydrogenation kinetics of the TiH2 powder were evaluated by the magnitude of peak shift with heating rates using thermogravimetric analysis. The activation energy of the dehydrogenation reaction, calculated from the slope of the Kissinger plot, was measured to be 228.6 kJ/mol for the raw powder and 194.5 kJ/mol for the milled powder. TEM analysis revealed that both the milled and dehydrogenated powders showed an angular shape with a size of about 200 nm.
        4,000원
        2.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially drytransferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.
        4,000원
        3.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, interest in technology for eco-friendly energy harvesting has been increasing. Polyvinylidene fluoride (PVDF) is one of the most fascinating materials that has been used in energy harvesting technology as well as micro-filters by utilizing an electrostatic effect. To enhance the performance of the electrostatic effect-based nanogenerator, most studies have focused on enlarging the contact surface area of the pair of materials with different triboelectric series. For this reason, one-dimensional nanofibers have been widely used recently. In order to realize practical energy-harvesting applications, PVDF nanofibers are modified by enlarging their contact surface area, modulating the microstructure of the surface, and maximizing the fraction of the β-phase by incorporating additives or forming composites with inorganic nanoparticles. Among them, nanocomposite structures incorporating various nanoparticles have been widely investigated to increase the β-phase through strong hydrogen bonding or ion-dipole interactions with -CF2/CH2- of PVDF as well as to enhance the mechanical strength. In this study, we report the recent advances in the nanocomposite structure of PVDF nanofibers and inorganic nanopowders.
        4,000원
        4.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.
        4,000원
        5.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박 및 해양구조물에서의 생물학적 오손을 방지하기 위하여 나노크기의 MnOx-WO₃-TiO₂ 분말을 졸겔법으로 합성하여 특성을 제어하였고, 입자의 결정과 미세구조 등 분체특성 평가를 실시하였다. 자기마모형 방오도료의 안료에 적용하기 위하여 수지에 첨가 된 TiO₂계 나노분말 안료의 함량에 따른 표면특성 및 방오성능을 확인하였다. TiO₂계 안료의 분체특성으로 비표면적은 약 90 m²/g, 입자 크기는 약 100 ~ 150 nm을 보였다. 텅스텐 산화물은 망간산화물과 티타늄산화물과 상관관계를 통해, 삼원계 분체가 분체특성 및 표면특성이 우수하였다. 망간산화물의 첨가는 독특한 산화환원 특성으로 인하여 방오성능을 증가시키고, 텅스텐 산화물은 안료의 분체특성을 향상시킴으로, 안료와 수지의 비율을 조절하여 분산성, 표면특성 및 방오성능을 제어하였다. 그 결과로, 분산성 및 표면특성에 있어서 1, 5 wt. % 안료가 첨가된 것이 일부 우수하였으나, 5개월 동안의 해상침지시험에서는 2 wt. % 함유된 시편이 높은 방오성능을 보여 해양구조물의 방오안료 적용가능성을 확인하였다.
        4,000원
        6.
        2016.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and H2O, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale TiO2 films. The TiO2 films were prepared at 300 oC by using Ti[N(CH3)2]4 and H2O as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ~0.7 Å/cycle. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between TiO2-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.
        4,000원
        7.
        2015.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have hybridized Angelic gigas Nakai flower extract (AGNF) and two-dimensional layered double hydroxide (LDH) nanomaterials through reversible dehydration-hydration in order to obtain the nanopowder of natural extract. The Angelica gigas Nakai flower was treated with methanol to extract carbohydrate, polyphenol, and flavonoid components. LDH with an uniform size of 250 nm was prepared by hydrothermal method and calcined at 400ºC to obtain layered double oxide (LDO) precursor. For hybridization, AGNF in 40% methanol was reacted with LDO powder at various AGNF/LDO weight ratios: 0.15, 0.30, 0.85, and 1.70. The hybrids were obtained in fine powder which had enhanced hydrophilicity and water dispersity compared with dried AGNF. The X-ray diffraction and scanning electron microscopic results revealed that the house-of-cards structure of nanomaterials could encapsulate AGNF moiety inside their cavity. Quantitative analyses using UV-Vis spectra exhibited that the content of AGNF in hybrid increased upon AGNF/LDO ratio in reactant increased. According to 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay, AGNF/LDO showed higher antioxidant activity compared with an equivalent amount of AGNF itself.
        4,000원
        8.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, cobalt nanopowder is fabricated by sonochemical polyol synthesis and magnetic separation method. First, sonochemical polyol synthesis is carried out at 220oC for up to 120 minutes in diethylene glycol (C4H10O3). As a result, when sonochemical polyol synthesis is performed for 50 minutes, most of the cobalt precursor (Co(OH)2) is reduced to spherical cobalt nanopowder of approximately 100 nm. In particular, aggregation and growth of cobalt particles are effectively suppressed as compared to common polyol synthesis. Furthermore, in order to obtain finer cobalt nanopowder, magnetic separation method using magnetic property of cobalt is introduced at an early reduction stage of sonochemical polyol synthesis when cobalt and cobalt precursor coexist. Finally, spherical cobalt nanopowder having an average particle size of 22 nm is successfully separated.
        4,000원
        9.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pt nanopowder-dispersed SiO2 (SOP) films were prepared by RF co-sputtering method using Pt and SiO2 targets in Ar atmosphere. The growth rate and Pt content in the film were controlled by means of manipulating the RF power of Pt target while that of SiO2 was fixed. The roughness of the film was increased with increasing the power of Pt target, which was mainly due to the increment of the size and planar density of Pt nanopowder. It was revealed that SOP film formed at 10, 15, 20 W of Pt power contained 2.3, 2.7, and 3.0 nm of spherical Pt nanopowder, respectively. Electrical conductivity of SOP films was exponentially increased with increasing Pt power as one can expect. Interestingly, conductivity of SOP films from Hall effect measurement was greater than that from DC I-V measurement, which was explained by the significant increase of electron density.
        4,000원
        10.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The key concept of nanopowder agglomerate sintering (NAS) is to enhance material transport by controlling the powder interface volume of nanopowder agglomerates. Using this concept, we developed a new approach to full density processing for the fabrication of pure iron nanomaterial using Fe nanopowder agglomerates from oxide powders. Full density processing of pure iron nanopowders was introduced in which the powder interface volume is manipulated in order to control the densification process and its corresponding microstructures. The full density sintering behavior of Fe nanopowders optimally size-controlled by wet-milling treatment was discussed in terms of densification process and microstructures.
        4,000원
        11.
        2012.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The preparation of Sm2O3 doped CeO2 in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized Sm2O3 doped CeO2 powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized Sm2O3 doped CeO2 were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of Sm2O3 doped CeO2 nanoparticles changed from monoclinic to tetragonal at approximately 560˚C. The phase of the synthesized Sm2O3 doped CeO2 with heating to 600˚C for 30 min was tetragonal CeO2. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.
        3,000원
        12.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper describes the manufacturing process of tilting pad gas bearing with a diameter of 5 mm and a length of 0.5-1 mm for power MEMS (Micro Electomechanical Systems) applications. The bearing compacts with nanopowder feedstock were prepared by Ni-metal mold with 2-mold system using LIGA process. The effect of the manufacturing conditions on sintering properties of nanopowder gas bearing was investigated. In this work, Fe-45 wt%Ni nanopowder with an average diameter of 30-50 nm size was used as starting material. After mixing the nanopowder and the wax-based binders, the amount of powder was controlled to obtain the certain mixing ratio. The nanopowder bearing compacts were sintered with 1-2 hr holding time under hydrogen atmospheres and under temperatures of to . Finally, the critical batch of mixed powder system was found to be 70% particle fraction in total volume. The maximum density of the sintered bearing specimen was about 94% of theoretical density.
        4,000원
        13.
        2012.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study has been performed on the full density sintering of Fe nanopowder and the surface hardening by plasma ion nitriding. The Fe sintered part was fabricated by pressureless sintering of the Fe nanopowder at in which the nanopowder agglomerates were controlled to have 0.5-5 sized agglomerates with 150 nm Fe nanopowders. The green compact with 46% theoretical density(T.D.) showed a homogeneous microstructure with fine pores below 1 . After sintering, the powder compact underwent full densification process with above 98%T.D. and uniform nanoscale microstructure. This enhanced sintering is thought to be basically due to the homogeneous microstructure in the green compact in which the large pores are removed by wet-milling. Plasma ion nitriding of the sintered part resulted in the formation of '- equilibrium phase with about 12 thickness, leading to the surface hardening of the sintered Fe part. The surface hardness was remarkably increased from 176 for the matrix to 365 .
        4,000원
        14.
        2011.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The preparation of Y2O3-doped ZrO2 nanoparticles in Igepal CO-520/cyclohexane reverse micelle solutions is studied here. In this work, we synthesized nanosized Y2O3-doped ZrO2 powders in a reverse micelle process using aqueous ammonia as the precipitant. In this way, a hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a microemulsion consisting of cyclohexane as the oil phase, with poly (oxyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by thermogravimetrydifferential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The crystallite size was found to nearly identical with an increase in the water-to-surfactant (R) molar ratio. A FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and the calcined powder. The average particle size and distribution of the synthesized Y2O3-doped ZrO2 were below 5 nm and narrow, respectively. The TG-DTA analysis showed that the phase of the Y2O3-doped ZrO2 nanoparticles changes from the monoclinic phase to the tetragonal phase at temperatures close to 530˚C. The phase of the synthesized Y2O3-doped ZrO2 when heated to 600˚C was tetragonal ZrO2.
        4,000원
        15.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Experiments with a URT-0.5 accelerator (0.5 MeV, 50 ns, 1 kW) generating a nanosecond electron beam for irradiation of silver nitrate in various liquid solutions (water and toluene) were performed with the aim of producing silver nanopowders. A radiochemical reaction allows making weakly agglomerated pure Ag powders with particles of 10-15 nm and 30-50 nm in size by irradiation in toluene and water respectively. The injection of the nanosecond electron beam energy to the solution is optimal. As the absorbed dose increases, the output of the radiochemical reaction does not grow, but more agglomerated powders are synthesized.
        4,000원
        16.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Trace analysis of Cd and Pb at surface modified thick film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. Bi nanopowder synthesized by gas condensation (GC) method showed the size of nm with BET surface area, . For a strong adhesion of the Bi nanopowder onto the screen printed carbon paste electrode, nafion solution was added into Bi-containing suspension. From the SWASV, it was found that the Bi nanopowder electrode exhibited a well-defined responses relating to the oxidations of Cd and Pb. The current peak intensity increased with increasing concentration of Cd and Pb. From the linear relationship between Cd/Pb concentrations and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of the electrode was estimated to be and for Cd and Pb, respectively, on the basis of the signal-to-noise characteristics (S/N=3) of the response for the solution under a 10 min accumulation.
        4,000원
        17.
        2008.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study focused on the synthesis of a bismuth-antimony-tellurium-based thermoelectric nanopowders using plasma arc discharge process. The chemical composition, phase structure, particle size of the synthesized powders under various synthesis conditions were analyzed using XRF, XRD and SEM. The powders as synthesized were sintered by the plasma activated sintering. The thermoelectric properties of sintered body were analyzed by measuring Seebeck coefficient, specific electric resistivity and thermal conductivity. The chemical composition of the synthesized Bi-Sb-Te-based powders approached that of the raw material with an increasing DC current of the are plasma. The synthesized Bi-Sb-Te-based powder consist of a mixed phase structure of the , and phases. This powder has homogeneous mixing state of two different particles in an average particle size; about 100nm and about 500nm. The figure of merit of the sintered body of the synthesized 18.75 wt.%Bi-24.68 wt.%Sb-56.57 wt.%Te nanopowder showed higher value than one of the sintered body of the mechanically milled 12.64 wt.%Bi-29.47 wt.%Sb-57.89 wt.%Te powder.
        4,000원
        18.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe based () amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of 200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.
        4,000원
        19.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintering behavior of iron nanopowder agglomerate compact prepared by slurry compaction method was investigated. The Fe nanopowder agglomerates were prepared by hydrogen reduction of spray dried agglomerates of ball-milled nanopowder at various reduction temperatures of , and , respectively. It was found that the Fe nanopowder agglomerates produced at higher reduction temperature have a higher green density compact which consists of more densified nanopowder agglomerates with coarsed nanopowders. The sintering behavior of the Fe nanopowder agglomerates strongly depended on the powder packing density in the compact and microstructure of the agglomerated nanopowder. It was discussed in terms of two sintering factors affecting the entire densification process of the compact.
        4,000원
        20.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        [ ] nanotubes for photocatalytic application have been synthesized by hydrothermal method. nanotubes are formed by washing process after reaction in alkalic solution. Nanotubes with different morphology have been fabricated by changing NaOH concentration, temperature and time. nanoparticles were treated inside NaOH aqueous solution in a Teflon vessel at for 20 h, after which they were washed with HCl aqueous solution and deionized water. Nanotube with the most perfect morphology was formed from 0.1 N HCl washing treatment. nanotube was also obtained when the precursor was washed with other washing solutions such as , NaCl, , and . Therefore, it was suggested that ion combined inside the precursor compound slowly comes out from the structure, leaving nanosheet morphology of compounds, which in turn become the nanotube in the presence of hydroxyl ion. To stabilize the sheet morphology, the different type of washing treatment solution might be considered such as amine class compounds.
        4,200원
        1 2 3