This research paper delves into the effects of noni juice concentration, fermentation temperature, and incubation time on the physicochemical and sensory properties of noni juice-fortified yogurt. The study found that increasing the concentration of noni juice leads to higher acidity in the yogurt, resulting in a decrease in pH, total soluble solids content, and syneresis. The optimal concentration for achieving the desired physical and sensory qualities is 3%. Incubation time and temperature were also found to significantly influence the yogurt’s pH, acidity, total soluble solids content, and syneresis, with higher incubation time and temperature consistently producing higher-quality yogurt. The best incubation time and temperature for noni juice-fortified yogurt were determined to be 10 h at 42oC. Therefore, the research suggests that adding 3% Bestone noni juice and incubating for 10 h at 42oC using the starter culture powder Yogourmet can lead to the production of consistently high-quality noni juice-fortified yogurt, which is of significant relevance and importance to the dairy and fermentation industries.
This study investigated the impact of hydrolyzed plant proteins on the physical, thermal, and rheological properties of rice flour (RF) for protein fortification for the elderly and general food systems. Faba bean protein concentrate and chickpea flour were first treated with polysaccharide hydrolyzed enzymes (control; CTFP and CTCF, respectively) and subsequentially with protease hydrolyzed enzymes (hydrolyzed protein material; HZFP and HZCF, respectively). The addition of CTFP and HZFP enhanced the swelling power of RF, whereas the CTCF and HZCF exhibited the opposite trends. Adding all controls and hydrolyzed protein materials to RF increased the solubility and gelatinization temperature and decreased the gelatinization enthalpy. The HZFP addition successfully developed the pasting viscosity of RF, whereas the others did not. The RF-HZFP mixture had a higher peak viscosity than RF but lower trough, breakdown, final, and setback viscosities. These findings suggest that the controls and hydrolyzed protein materials studied here could be used as sources for protein fortification of foods, particularly for the elderly, with minimal changes in textural and rheological characteristics, thereby contributing to the development of nutritious and palatable food products.
With changing dietary trends, active research is underway to substitute rice flour for wheat flour, commonly added to various processed foods. This study aimed to explore whether Baromi2, a floury rice incorporated in the production of Sujebi, can effectively replace wheat flour at appropriate levels based on its physicochemical and cooking characteristics. Baromi2 was categorized based on particle size (100, 140, and 200 mesh) and added in proportions of 10% and 20% relative to the weight of wheat flour. As the amount of Baromi2 increased, the protein and lipid content of the mixed flour also increased. Simultaneously, the dough strength decreased as the noodles became thinner, reducing hardness, gumminess, and chewiness. Additionally, a decrease in particle size increased peak viscosity and breakdown viscosity, whereas setback viscosity decreased. When Baromi2 was added at a 10% ratio, it displayed a low cooking loss, demonstrating desirable characteristics for Sujebi and was considered the most suitable proportion for production. These results provide foundational data for developing various rice-processed products using Baromi2, contributing to expanding consumption and enhancing utility.
This study evaluated the physicochemical characteristics of wheat-flour mixed powders and cooking properties of Sujebi based on the addition of ‘Baromi2’ rice flours for increased expansion of rice consumption. The addition rates at which a roll surface sheet was formed were selected as 0, 10, 20, 30, and 50% based on preliminary experiments with 0-90% addition rates of ‘Baromi2’. Results of physicochemical characterization showed that increasing the addition ratio of ‘Baromi2’ rice flour resulted in increased crude ash and crude fat levels, however crude protein and total starch decreased. The L*-value (lightness) increased with increasing addition ratio of ‘Baromi2’ rice flour; in contrast, a*-value (redness), b*-value (yellowness), and particle size decreased. Results of RVA showed that increasing the addition ratio of ‘Baromi2’ rice flour increased the peak, breakdown, and setback. Regarding textural properties, hardness and chewiness values were significantly reduced with increasing addition ratios of ‘Baromi2’ rice flour. Based on these results, a blending ratio of 20% or less of ‘Baromi2’ is considered suitable for producing Sujebi, and this result serves as basic data for the development of processed rice flour products using ‘Baromi2’.
Rice ratooning is the cultural practice that easily produces secondary rice from the stubble left behind after harvesting the main crop. ‘Daol’ is an extremely early growing rice variety. Planting this variety early allows for an additional ratoon harvest after the primary rice harvest. The plant growth and yield of ratoon rice were very low compared to those of main rice. Protein, amylose content, and head rice rate were higher in ratoon rice than in main rice. The distribution by the rice flour particle size of main and ratoon rice was similar. The damaged starch content in ratoon rice was relatively high at 6.1%. Ratoon rice required a longer time and higher temperature for pasting than main rice. Compared to the original rice, peak viscosity (PV), hot paste viscosity (HPV), cool paste viscosity (CPV), and breakdown (BD) were very low, and setback (SB) was high. As a result of analyzing the gelatinization properties of main and ratoon rice using differential calorimetry, it was found that the onset (To), peak (Tp), and conclusion (Tc) of ratoon rice starch were processed at a lower temperature than those of main rice. The gelatinization enthalpy of both samples was similar. The distribution of amylopectin short chains in ratoon rice was higher than that in main rice.
To improve usability of super sweet corn, extracts were prepared with hydrolytic enzyme and changes in physicochemical and antioxidant properties were analyzed. Soluble solids and reducing sugars contents were higher in all enzyme treatment groups than in the control. When enzyme treatment time increased, contents of soluble solids and reducing sugars were also increased. There was no significant difference in lightness between treatment groups, with redness showing the highest value in the control and yellowness showing the highest value in the invertase treatment group. Free sugar content in the control was the lowest. However free sugar content in the enzyme combination treatment group was increased by more than four times compared to that in the control. Contents of ascorbic acid, flavonoids and polyphenols were higher in the enzyme treatment group than in the control. In particular, the enzyme combination treatment group showed the highest content. DPPH and ABTS radical scavenging abilities were significantly higher in all enzyme treatment groups than in the control. Radical scavenging abilities of cellulase treatment group and enzyme combination treatment group showed high activity. The activity increased when enzyme treatment time increased. The combined enzyme treatment method for super sweet corn was suitable for food processing.
This study compared the physicochemical properties of soybean curd residue and black soybean curd residue produced by hot air-drying and freeze-drying. Regardless of drying method, the crude protein, crude ash, crude fiber contents, pH, L, a, b color values and water soluble index were higher in soybean curd residue, whereas total polyphenol contents and antioxidant activity were higher in black soybean curd residue. Significant differences in water absorption index, oil absorption capacity and emulsion activity were observed between soybean curd residue and black soybean curd residue in freeze-drying. On the other hand, the emulsion stability was not significant difference in both hot-air drying and freezedrying. The crude protein and crude fiber contents of soybean curd residue were not significant difference between hot-air drying and freeze-drying. Freeze-drying resulted in higher crude ash contents, pH, water absorption index, water soluble index, oil absorption capacity, emulsion activity and emulsion stability than hot-air drying. Hot-air drying have caused significantly higher water contents, water activity, total polyphenol contents and antioxidant activity in soybean curd residue than freeze-drying. In conclusion, soybean type and drying methods affect the physicochemical and quality characteristics of soybean curd residue, which could be important factors in the manufacture of processed foods.
Physicochemical properties and storage stability of plant-based alternative meat prepared with low-fat soybean powder (LPAM) treated by supercritical-CO2 and those of full-fat soybean powder (FPAM) were compared. Ash and crude protein contents were higher in LPAM than in FRAM. Water absorption capacity and oil absorption capacity were significantly higher in LPAM than in FPAM. Water binding capacity was higher in LPAM than in FPAM during a 20 days storage period at 5℃ and pH was significantly lower in LPAM than in FPAM after a 5~10 days storage period. Hardness, gumminess and chewiness significantly increased with the increase in the storage period, and the three were significantly higher in LPAM than in FPAM after 10 days and 20 days of storage. The acid value showed no remarkable difference according to the storage period in LPAM; however, it was significantly higher in FPAM than in LPAM after 20 days of storage. The peroxide value and TBA value were significantly increased according to the storage period, and were significantly lower iin LPAM than in FPAM during all the storage periods. Therefore, the use of low-fat soybean powder may be effective in improving oxidative stability during storage in the production of plant-based alternative meat.
A beverage was developed using the Abeliophyllum distichum leaf (AL). The beverage was prepared by adding it to apple juice by concentration, and physicochemical quality, antioxidant activities, and sensory evaluation were measured. Soluble solid and reducing sugar content of the control were 12.57 °Brix and 11.40%, respectively, and there was no difference from the group with addition of the AL extract. However, pH was slightly increased upon addition of AL extract. Lightness and yellowness increased when AL extract was added. Verbascoside content was not detected in the control, but it increased as the concentration of AL extract increased. The contents of ascorbic acid and flavonoids were 5.38 and 20.42 mg%, respectively, and there was no significant difference between the groups. However, the content of polyphenols increased as the concentration of the AL extract increased. DPPH radical and metal ion scavenging activity were increased by addition of the AL extract, but there was no difference in the ABTS radical scavenging activity. As a result of the sensory evaluation, there was no difference from the control even wihen the AL extract was added; thus, it was considered that there was no problem with the degree of acceptability when added within about 300 ppm.