본 연구는 시멘트 산업의 대체연료(폐합성수지 등) 사용량 증대에 따라 이를 활용한 탄소배출 저감 및 시멘트/콘크리트 제조 적용 기술 및 방안에 대해 검토하고자 했으며, 향후 시멘트 산업의 탄소중립 실현을 위한 기초 자료로써 활용하고자 한다. 시멘트 제조 에 있어 폐합성수지 사용은 경제적 장점과 높은 발열량으로 인해 연료로서의 가치가 높은 것으로 나타났으며, 열경화성 수지는 부가가 치가 높은 저탄소 시멘트 복합체의 비반응성 골재로 작용할 수 있는 것으로 확인되었으며, 감마선 조사는 다양한 폐플라스틱의 성능 평가에 적용되는 것으로 확인되었다.
In stable continental regions, selecting appropriate ground motions for seismic design and dynamic response analysis presents significant challenges. This study evaluates the liquefaction potential of the Nakdonggang delta region, South Korea, by generating synthetic ground motion scenarios and applying a scenario-based liquefaction assessment approach. We utilized a hybrid broadband ground motion simulation method proposed by Graves and Pitarka (2010, 2015) to create bedrock ground motions for three hypothetical earthquakes (Mw 6.2 and 6.0) occurring along the Dongrae and Miryang faults. The generated synthetic ground motions were used as input for onedimensional nonlinear site response analyses, incorporating shear wave velocity profiles derived from surface wave inversion. The simulated ground motions demonstrated higher responses at short periods and relatively weaker responses at long periods compared to the Korean design spectra. This amplification of long-period components was attributed to the dynamic response of deep sedimentary layers, while high-frequency components were generally deamplified due to damping effects in shallow silty layers. Liquefaction susceptibility was assessed using surface ground motions derived from the site response analyses, following the SPT-based simplified method proposed by Idriss and Boulanger (2008). Results indicated high liquefaction potential across most sites for the Dongrae earthquake scenario, while liquefaction was unlikely for all sites under the Miryang-1 scenario. For the Miryang-2 scenario, liquefaction was predicted at some sites. Overall, liquefaction is expected at PGA values of approximately 0.13 g or higher, with sites exhibiting lower shear wave velocities being more vulnerable to liquefaction
This study examines career trajectories among women with career breaks, using data from the 2019 National Survey of Women on Career Breaks (n=1,138). The data underwent preprocessing, including outlier detection, feature scaling, and class imbalance correction with SMOTEENN. Three machine learning models were evaluated, with the Random Forest model achieving the best performance. Key predictors included flexible leave policies, social insurance, remote work options, and job security. The findings highlight the importance of supportive organizational policies in retaining female employees. Future research should explore longitudinal impacts and additional variables like organizational culture.
Deep geological repositories (DGR) count amongst the world largest environmental protection projects. They are the internationally advocated reference solution for the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). Many countries have engaged in programs to develop their own DGR. In Europe, four countries have passed the important milestone of choosing or announcing the appropriate site for the location of their HLW disposal facilities. Finland has almost finished the commissioning of its DGR and should start industrial disposal operations in 2025. Sweden has authorized the construction of its DGR and is finalizing the licensing document to start construction. France is reviewing the construction license application of its DGR. Switzerland has proposed the location of its DGR and is carrying out the production of the documentation for the license application. These four countries took decades to choose the location for their DGR. The length of this process is explained by 1) the amount of technical investigations and studies that were carried out to first identify, select and then fully characterize the suitable site and 2) the progressive decision-making process defined by their respective legal frameworks, including the participation and engagement of communities and stakeholders.
전세계적으로 국제항공 부문의 탄소 감축에 대한 요구가 증가함에 따라 지속가능항공유 (Sustainable Aviation Fuel, SAF)의 사용 확대와 기술개발에 대한 투자가 촉진되고 있다. SAF는 기존 석유 계 항공유 연료와 유사하기 때문에 항공기의 엔진이나 연료 공급 시스템 및 공항의 연료공급 인프라의 구 조적 변경없이 그대로 사용 가능하며(drop-in fuel), 기존 항공유에 일정비율로 혼합하여 사용할 수 있는 장점이 있다. SAF는 전세계적으로 다양한 바이오매스 원료를 사용하여 제조된 바이오항공유(Bio-jet fuel) 와 포집 이산화탄소와 그린수를 사용하여 합성된 재생합성항공유(synthetic-SAF)로 구분할 수 있다. 또한 광합성을 하는 바이오매스를 기반으로 하는 바이오항공유는 전주기평가(life cycle assessment, LCA) 관점 에서 기존 석유계 항공유보다 이산화탄소를 약 80% 저감되며, 탄소중립연료로서 인정받고 있다. 본 논문 에서는 재생합성항공유의 생산을 위한 제조기술로 이산화탄소 포집기술, 역수성가스(Reverse Water-Gas Shift, RWGS) 전환기술, Fischer-Tropsch(F-T) 공정기술과 제조된 재생합성항공유의 연료특성과 제조규 격 및 제조기술 인증에 대한 연구사례를 분석하여 국내 기술개발 필요성과 방향을 제시하고자 한다.
해양 환경에서 발생하는 화재는 일반적인 화재 상황에 비해 빠르게 화염이 전파되기 때문에 초기 발견과 대응이 매우 중 요하다. 최근의 화재 감지 시스템은 카메라 센서와 딥러닝 검출 모델을 활용하여 개발되고 있지만, 해양 환경에 특화된 딥러닝 모델 을 학습하기 위해 해양 환경에서 화재 데이터를 실제로 수집하는 것은 기술적, 경제적 측면에서 어려움이 존재한다. 본 논문에서는 이러한 문제를 해결하기 위해 언리얼 엔진 기반 가상 데이터 생성 도구를 활용하여 가상 환경에서 해양 환경을 구축하고 여러 상황 의 시나리오에서 데이터를 수집하여 해양 환경 화재 가상 데이터셋을 구축하였다. 가상 데이터셋으로 학습한 RT-DETR-L 모델은 실 제 해양 환경에서 발생한 화재 상황을 수집하여 제작한 테스트 데이터셋에서 mAP50:95 0.529를 달성하였다. 또한 가상 데이터로 학습 한 검출 모델은 일반적인 화재 상황이나 항만시설에서 연기만 발생하는 상황에서도 화재를 검출하는 것을 볼 수 있었다. 이를 통해 실제 데이터가 아닌 가상 데이터셋을 사용하여 데이터셋을 구축하여도 해양 환경 화재와 같은 특수한 상황에서의 검출 모델 성능 향 상에 도움을 줄 수 있다는 것을 확인하였다.
The initial radionuclide migration quantity depends on the total amount of solubilized species. Geochemical modeling based on a thermodynamic database (TDB) has been employed to assess the solubility of radionuclides. It is necessary to evaluate whether the TDB describes the domestic repository conditions appropriately. An effective way to validate the TDB-based modeling results is through direct comparisons with experimentally measured values under the conditions of interest. Here, the solubilities of trivalent Sm, Eu, and Am were measured in synthetic KURT-DB3 groundwater (Syn- DB3) and compared with modeling results based on ThermoChimie TDB. Ln2(CO3)3·xH2O(cr) (Ln = Sm, Eu) solids were introduced into the Syn-DB3 and dissolved Sm and Eu concentrations were monitored over 223 days. X-ray diffraction analysis confirmed that the crystallinity of the solid compounds was maintained throughout the experiments. The dissolved Sm and Eu concentrations at equilibrium were close to the predicted solubilities of Sm2(CO3)3(s) and Eu2(CO3)3(s) based on the ThermoChimie TDB. The Am solubility measured under oversaturated conditions was comparable to the measured Eu concentrations, although they were measured under different experimental settings. More experimental data are needed for Am-carbonate solid systems with careful characterization of the solid phases to better evaluate Am solubility in domestic groundwater conditions.
유통 중인 생분해성 합성수지로 만들어진 식품용 기구 및 위생용품 50건을 대상으로 ‘식품용 기구 및 용기·포장 공전’의 기준·규격을 검사하였다. PLA 재질의 유아식기 1 건에서 ‘과망간산칼륨소비량’이 20mg/L으로 기준치(10 mg/ L 이하)를 초과하였고, 그 외 모든 시료에서는 포름알데히 드, 납, 비소 등이 기준·규격 이하로 안전한 수준이었다. 또한 가정에서 유아식기를 소독하는 방법의 안전성을 조 사하기 위해, PLA 재질의 유아식기(n=21)에서 반복적인 열탕소독과 자외선 조사에 따른 이행량의 변화를 조사하였다. 반복적인 열탕소독이 자외선 조사에 비해 포름알데 히드와 비소의 이행량이 많았으나, 이행량은 매우 낮은 수 준이었다. 그리고 유아(만 1-3세) 기준으로 계산한 포름알 데히드와 비소의 일일추정섭취량(EDI)은 최대 6.0×10-4mg/ kg b.w./day 및 1.3×10-1 μg/kg b.w./day였으며, 이는 일일섭 취한계량(TDI, 0.15 mg/kg b.w./day) 및 잠정주간섭취허용 량(PTWI, 9.0 μg/kg b.w./week)의 0.40% 및 10.42%로 낮 은 수준임을 확인하였다. 따라서 현 국내에서 유통되고 있 는 식품용 생분해성 합성수지제는 안전한 수준임을 확인 하였다.
Over the last decade, there has been growing interest in the plastic degradation capabilities of insect because herbivorous insects may be a valuable resource for microorganisms that can break down synthetic plastics. Insects that can digest plastics using their gut microbiota are gaining interest for use in bioremediation, although their environmental benefits remain unknown. However, most plastics biodegraded by insect gut microbes are polyethylene, polystyrene with little knowledge available on the gut microbiome of insects capable of degrading other synthetic plastics. Therefore, there is an urgent need to secure microbial resources based on insect-microbiome interactions and promote end-of-life solutions for synthetic plastics.
Graphene quantum dots (GQDs) are zero-dimensional carbonous materials with exceptional physical and chemical properties such as a tuneable band gap, good conductivity, quantum confinement, and edge effect. The introduction of GQDs in various layers of solar cells (SCs) such as hole transport layer (HTL), electron transport materials (ETM), cathode interlayer (CIL), photoanode materials (PAM), counter electrode (CE), and transparent conducting electrode (TCE) could improve the solar energy (SE) harvesting, separation and transportation of electrons and hole, thus ultimately enhance the overall performance and stability of SCs. The incorporation of GQDs in various layers such as HTL, ETM, CIL, PAM, CE, and TCE achieved photo conversion efficiencies (PCEs) of 18.63, 21.1, 12.81, 9.41, 8.1, and 3.66%, respectively. Furthermore, GQDs improved stabilities such as resistance to degradation for HTL (up to 77%), ETM (80%), resistance to UV light for ETM (94%), resistance to temperature in ETM (90%), and bending stabilities after 1000 cycles for HTL (88%) and for TCE (90%). There are reviews focused on the utilization of different carbon-structured materials such as graphene, carbon nanotubes (CNT), fullerenes, and carbon dots in SCs applications. More specifically, the utilization of GQDs for SCs is limited and yet to be explored in greater detail. This review mainly focuses on the recent advancement of various techniques of production of GQDs synthesis, utilization of GQDs in various layers like HTL, ETM, CIL, PAM, CE, and TCE for the enhancement of PCE, and the stability of SCs. As a result, we believe that an exclusive study on GQDs-sensitized solar cells (GQDSSCs) could provide an in-depth analysis of the recent progress, achievements, and challenges.
Fluorine (F) recovery from wet process phosphoric acid (WPA) is essential for sustainable resource utilization and environmental protection. This work systematically investigates the F recovery mechanism by air stripping from three simulated systems: H3PO4- H2SiF6-H2O, H3PO4- HF-H2O, H3PO4- H2SiF6-HF-Al3+-H2O, and from two industrial systems: WPA and WPA-Al3+ under different stripping temperatures (60–110 ℃) and stripping times (0–120 min). The influence on the existence form of F, the content of Al3+ cations and the addition of active silica on the F removal rate in the phosphoric acid solution is studied by analyzing the changes in the contents of F, P and Si. The results indicate that the F in the form of H2SiF6 is more easily released from the phosphoric acid solution than that in the form of HF. While, the release of F is inhibited in the presence of the Al3+ in the solution due to the formation of Al-F complexes that are characterized by 19F NMR, 31Si NMR and FTIR techniques. Interestingly, the addition of active silica can promote the conversion of HF to H2SiF6 in the solution and significantly improve the release rate of F. The researching results can provide an important guidance for industrial practice of WPA.
The disposal of spent nuclear fuel (SNF) in a deep geological repository (DGR) is a widely accepted strategy for the long-term sequestration of radiotoxic SNF. Ensuring the safety of a DGR requires the prediction of various reactions and migration behaviors of radionuclides (RNs) present in SNF within its geochemical surroundings. Understanding the dissolution behaviors of mineral phases harboring these RNs is crucial, as the levels of RNs in groundwater are basically linked to the solubility of these solid phases. Accurate measurements of solubility demand the use of welldefined solid materials characterized by chemical compositions and structures. Herein, we attempted the synthesis of sklodowskite, a magnesium-uranyl (U(VI))-silicate, employing a twostep hydrothermal synthetic approach documented previously. Subsequently, we subjected this synthesized sklodowskite to various analytical techniques, including powder X-ray diffraction (pXRD), scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), and vibrational spectroscopies (FTIR and Raman). Based on our findings, we confidently identify the obtained mineral phase as sklodowskite (Mg[UO2SiO3OH]2·5H2O). This identification is primarily based on the similarity between its pXRD pattern and the reference XRD pattern of sklodowskite. Furthermore, the measured infrared and Raman spectra show the vibrational modes of UO2 2+ and SiO4 4- ions, particularly within the 700~1,100 cm-1 region, which support that the synthetic mineral has a characteristic layered uranyl-silicate structure of crystalline sklodowskite. Finally, we utilized synthetic minerals to estimate its solubility up to about three months in a model groundwater, where the dissolved species composition is analogous to that of granitic groundwater from the KAERI Underground Research Tunnel. In this presentation, we will present in detail the results of spectroscopic characterizations and the methodology employed to assess the solubility of the U(VI)-silicate solid phase.
소형 곤충으로 좁은 틈새에 있는 총채벌레는 종종 살충제 살포에 노출되기 어렵다. 이에 접촉페로몬을 처리하여 은둔행동을 막으려는 행동 교란 방제 전략을 세웠다. 꽃노랑총채벌레(Frankliniella occidentalis)에서 밝혀진 접촉페로몬은 7-methyltricosane (7TM)으로 본 연구에서는 먹이에 이 물질을 처리하여 행동 교란 유무를 생물검정하였다. 이 접촉페로몬은 유충에게 영향을 주지 않았지만 수컷 성충으로 하여금 처리된 먹 이로부터 회피하려는 행동을 유발하였다. 반면에 암컷 성충에게는 오히려 7TM이 처리된 지역으로 이동하는 행동을 유발하였다. 동일한 접촉페 로몬에 대해서 대만총채벌레(Frankliniella intonsa)에서도 유사한 행동 변화가 관찰되었다. 이러한 7TM에 기인한 총채벌레의 행동 변화를 살충 제 처리와 연결하여 고추를 가해하는 총채벌레류를 대상으로 방제효과를 검정하였다. 스피네토람 살충제 단독 처리에 비해 7TM과 혼합하여 처 리하면 총채벌레류 방제효율이 증가하였다. 흥미로운 점은 7TM 단독 처리로도 대만총채벌레 밀도에 일부 감소 효과를 보여 이 물질이 총채벌레 의 행동교란을 주는 것을 뒤받침하였다. 본 연구는 접촉페로몬 처리로 총채벌레의 살충제 회피 행동을 줄여 방제효과를 높인 새로운 해충방제기 술을 제시한다.
Solubility and species distributions of radionuclides in domestic groundwater conditions are required for the safety assessment of deep underground disposal system of spent nuclear fuel (SNF). Minor actinides including Am contribute significant extents to the long-term radiotoxicity of SNF. In this study, the solubility of Am was evaluated in synthetic groundwater (Syn-DB3), which were simulated for the groundwater of the DB3 site in the KAERI Underground Research Tunnel (KURT). Geochemical modeling was performed based on the ThermoChimie_11a (2022) thermochemical database from Andra to estimate the solubility and species distributions of Am in the Syn-DB3 condition. Dissolved Am concentrations in the Syn-DB3 were experimentally measured under oversaturation conditions. Am(III) stock solution in perchlorate media was sequentially diluted in Syn-DB3 to prepare 8 μM Am(III) in Syn-DB3. The pH of the solutions was adjusted to be in the range of 6.4–10.5. A portion of the samples was transferred to quartz cells for UV-Vis absorption and time-resolved laser fluorescence spectroscopy studies and the rest were stored in centrifuge tubes. The absorption spectra of the samples were monitored over 70 days and the results suggest that Am colloidal particles were formed initially in all the samples and precipitated rapidly within two days. Over the experimental period of 236 days, small volume (10 μL) of the samples in the centrifuge tubes were periodically withdrawn after centrifugation (18000 rpm, 1 hr) for the liquid scintillation counting to measure the concentrations of Am dissolved in Syn-DB3. In the end of the experiments, pH of the samples was checked again and the final dissolved Am concentrations were determined after ultrafiltration (10 kDa) to exclude the contribution of colloidal particles. In the pH range of 8-9, which is relevant to the KURT-DB3 groundwater condition, the measured dissolved Am(III) concentrations were converged to around 10-8 M. These values are higher than the solubility of AmCO3OH:0.5H2O(s), but lower than that of AmCO3OH(am). There was no indication of transformation of the amorphous phase to the crystalline phase in our observation time window.
Dissolution behaviors of ThO2(cr) and PuO2(cr) in synthetic groundwater were investigated at room temperature (23 2°C) under atmospheric conditions. The synthetic groundwater was prepared according to the chemical composition of the KURT-DB3 groundwater. The pH and Eh of the synthetic groundwater were pH 8.9 and 0.5 V, respectively, and the major components were Na, K, Ca, Mg, Si, Cl, SO4, F and HCO3 ions. A few mg of ThO2(cr) and PuO2(cr) powder were added in the synthetic groundwater and the concentrations of Th and Pu in supernatant were monitored for 5 months of reaction time. The concentrations of Th before and after ultracentrifugation were compared, while the solid-liquid phase separation of Pu samples could not be applied due to the small volume of sample solutions. The concentrations of Th and Pu were measured by ICP-MS and alpha spectrometry, respectively. Geochemist’s Work Bench (GWB, standard, 17.0) was applied for the modeling with ThermoChimie TDB v. 11a, which was updated with the latest NEA-TDB (vol. 14). Aqueous species distributions and solubility limiting solid phases of Th and Pu under the synthetic groundwater conditions were evaluated. The results of geochemical modeling indicate that aqueous Th-OH-CO3 ternary species and Pu(IV) species are dominant in solutions equilibrated with ThO2(s) and PuO2(am, hyd), respectively. The dissolution behaviors of ThO2(cr) and PuO2(cr) are comparable to the dissolution of ThO2(aged, logKsp = 8.5) and the oxidative dissolution of PuO2(am, hyd) in the presence of PuO2(coll, hyd), respectively.