간행물

생물환경조절학회지 KCI 등재 Journal of Bio-Environment Control

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol.32 No.4 (2023년 10월) 30

21.
2023.10 구독 인증기관 무료, 개인회원 유료
Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.
4,000원
22.
2023.10 구독 인증기관 무료, 개인회원 유료
This study aimed to develop an optimal greenhouse model for strawberry seedling during the summer high-temperature period based on the results of field surveys. We conducted a survey on the structure types of 46 strawberry seedling farms nationwide, including width, ridge height, eaves height, ventilation method, seedling bed width, and spacing. Based on the survey results, we derived the optimal greenhouse model by considering various factors. The greenhouse width was set at 14 meters to maximize the efficiency of seedling beds and overall space. The height was determined at 2 meters, taking into account ventilation during the summer season. To reduce stress on the supporting structure due to snow loads, we established a reinforcement installation angle of 50 degrees. We analyzed two different models that use support beams with dimensions of φ48.1×2.1t and φ59.9×3.2t, respectively, to ensure structural safety against meteorological disasters, considering regional design wind speeds and snow accumulation. We utilized these developed greenhouse model to conduct strawberry seedling experiments, resulting in a high survival rate of average 93.2%. These findings confirm the usefulness of the strawberry seedling greenhouse in improving the seedling environment and enhancing overall efficiency.
4,000원
23.
2023.10 구독 인증기관 무료, 개인회원 유료
In this study, the effect of crown heating on the cultivation environment, budding, flowering and yields of strawberry was analyzed. In December, January, and February, when the outside temperature was low, the average strawberry crown temperature at daytime in the test zone was 1.3°C higher than that in the control zone, and the average strawberry crown temperature at nighttime in the test zone was 2.7°C higher than that in the control zone. The average bed temperature at daytime in test zone was 1.7°C higher than that in the control zone, and the average bed temperature at nighttime in test zone was 2.4°C higher than that in the control zone. As a result of performing correlation analysis and regression analysis on strawberry crown temperature and budding period, the correlation coefficient was -0.86, which tended to be shorter as the crown temperature was higher, and the determination coefficient was 0.74. The total yields of strawberry during test period were 392.6 g/plant for test greenhouse and 346.0 g/plant for control greenhouse respectively. As for the quality of strawberries, the ratio of 2L (very large) grades and L (large) grades was 62.4% in the test greenhouse and 58.5% in the control greenhouse, indicating that the proportion of high quality strawberries was higher in the test greenhouse.
4,000원
24.
2023.10 구독 인증기관 무료, 개인회원 유료
Melon fruits exhibit a wide range of morphological variations in fruit shape, sugar content, net quality, diameter and weight, which are largely dependent on the variety. These characteristics significantly affect marketability. For netted varieties, the uniformity and pattern of the net serve as key factors in determining the external quality of the melon and act as indicators of its internal quality. In this study, we evaluated the effect of fruit morphology and growth on netting by analyzing the changes in melon fruit quality under LED light treatment and monitoring fruit growth. Computer vision analysis was used for quantitative evaluation of fruit net quality, and a three-variable logistic model was applied to simulate fruit growth. The results showed that melons grown under LED conditions exhibited more uniform fruit shape and improvements in both net quality and sugar content compared to the control group. The results of the logistic model showed minimal error values and consistent curve slopes across treatments, confirming its ability to accurately predict fruit growth patterns under varying light conditions. This study provides an understanding of the effects of fruit shape and growth on net quality.
4,000원
25.
2023.10 구독 인증기관 무료, 개인회원 유료
In recent years, the government has strongly promoted multi-purpose utilization of paddy field. However, poor drainage causes waterlogging stress in upland crops, requiring subsurface drainage technology, resulting in high installation and management costs. To address this issue, a low-cost and high-efficiency technique was developed that utilizes wasted coir substrates which have characteristics of high porosity and good drainage, for upland crop cultivation in paddy fields. Soybeans were grown in both paddy soil and wasted coir slab with two planting densities (80×20 cm and 60×20 cm). The results showed that the coir substrates had better performance than the paddy soil in terms of soil physical and chemical properties and the growth and yield of upland crops are improved. The treatments using wasted coir substrate showed a 41.4% increase in yield and a 21.3% increase in protein content compared to PS treatment. Our findings demonstrate that recycling waste coir substrates to grow upland crops is a positive cultivation strategy to solve some drainage problems in paddy fields. This approach offers a sustainable solution for upland crop production while also addressing the issue of waste management in agriculture.
4,000원
26.
2023.10 구독 인증기관 무료, 개인회원 유료
This study was conducted to determine the optimal irrigation starting point by analyzing tree growth, physiological responses, fruit quality, and productivity in peach orchards. Seven-year-old ‘Kawanakajima Hakuto’ peach trees were used in an experimental field (35°49′30.4″N, 127°01′33.2″E) located within the National Institute of Horticultural and Herbal Science located in Wanju-gun, Jeollabuk-do. The irrigation starting point was set with four levels of –20, –40, –60, and –80 kPa from June to September 2022. While there were no significant differences in increase of trunk cross-section area and leaf area among treatments, shoot length and diameter decreased in the –80 kPa and –20 kPa treatments. The photosynthetic rate measured in August was highest for –60 kPa (17.7 μmol·m-2·s-1), followed by –40 kPa (15.6 μmol·m-2·s-1), –20 kPa (14.5 μmol·m-2·s-1) and –80 kPa (14.0 μmol·m-2·s-1). SPAD value measured in May and August was lower in the –80 kPa and –20 kPa treatments than in the –60 kPa and –40 kPa treatments. The harvest date reached three days earlier in the –20 kPa treatment compared to other treatments. The fruit weight was highest in the –60 kPa (379.1 g), followed by –40 kPa (344.0 g), –80 kPa (321.0 g) and –20 kPa (274.9 g). Firmness was the lowest in the –20 kPa treatment. The soluble solid content was highest in the –60 kPa treatment (13.3°Bx).The ratio of marketable fruits was highest in the –60 kPa treatment (50.7%) and lowest in the –80 kPa treatment (23.4%). In conclusion, we suggest that setting the irrigation starting point at –60 kPa could improve the fruit quality and yield in peach orchards.
4,000원
27.
2023.10 구독 인증기관 무료, 개인회원 유료
Tomatoes in greenhouse are a widely cultivated horticultural crop worldwide, accounting for high production and production value. When greenhouse ventilation is minimized during low temperature periods, CO2 enrichment is often used to increase tomato photosynthetic rate and yield. Plant-induced electrical signal (PIES) can be used as a technology to monitor changes in the biological response of crops due to environmental changes by using the principle of measuring the resistance value, or impedance, within the crop. This study was conducted to investigate the relationship between tomato growth data, vital response, and PIES resulting from CO2 enrichment in greenhouse tomatoes. The growth of tomato treated with CO2 enrichment in the morning was significantly better in all items except stem diameter compared to the control, and PIES values were also higher. The growth of tomato continuously applied with CO2 was better in the treatment groups than control, and there was no significant difference in chlorophyll fluorescence and photosynthesis. However, PIES and SPAD values were higher in the CO2 treatment group than control. CO2 enrichment have a direct relationship with PIES, growth increased, and transpiration increased due to the increased leaf area, resulting in increased water absorption, which appears to be reflected in PIES, which measures vascular impedance. Through this, this study suggests that PIES can be used to monitor crops due to environmental changes, and that PIES is a useful method for non-destructively and continuously monitoring changes of crops.
4,000원
28.
2023.10 구독 인증기관 무료, 개인회원 유료
The spectrum of this study was research on the closed hydroponic cultivation of netted melons (Cucumis melo L.) using coir substrate, analyzing the impact of this cultivation method on melon yield, fruit quality, and the efficiency of water and nutrient usage. The experimental results showed that the average fruit weight of the melons grown in a closed system was 71.4 g higher than that of the open system, and the fruit width was on average 0.2 cm larger, showing a statistically significant difference. However, there was no difference in the average sugar content of the fruit flesh and height. Although there is no substantial commercial difference, it is conjectured that the change in the macronutrients ratio in the irrigation has played a role in the statistically significant increase in fruit weight, which is attributed to changes in the crops' nutrient uptake concentrations. This necessitates further research for a more comprehensive understanding. In terms of the productivity of irrigation required to produce the fruit, applying the closed system resulted in an increase of 7.6 kg/ton compared to the open system, saving 31.6% of water resources. Additionally, in terms of nutrients, cultivating in a closed system allowed for savings of approximately 59, 25, 55, 83, 76, and 87% of N, P, K, Ca, Mg, and S, respectively, throughout the entire cultivation period. As the drainage was reused, the ratios of NO3 - and Ca2+ increased up to a maximum of 9.6 and 9.1%, respectively, while the ratios of other ions gradually decreased. In summary, these results suggest that closed hydroponic cultivation can effectively optimize the use of water and fertilizer while maintaining excellent fruit quality in melon cultivation.
4,000원
29.
2023.10 구독 인증기관 무료, 개인회원 유료
This study aimed to assess and determine the optimal model for predicting the full bloom date of ‘Fuji’ apples across South Korea. We evaluated the performance of four distinct models: the Development Rate Model (DVR)1, DVR2, the Chill Days (CD) model, and a sequentially integrated approach that combined the Dynamic model (DM) and the Growing Degree Hours (GDH) model. The full bloom dates and air temperatures were collected over a three-year period from six orchards located in the major apple production regions of South Korea: Pocheon, Hwaseong, Geochang, Cheongsong, Gunwi, and Chungju. Among these models, the one that combined DM for calculating chilling accumulation and the GDH model for estimating heat accumulation in sequence demonstrated the most accurate predictive performance, in contrast to the CD model that exhibited the lowest predictive precision. Furthermore, the DVR1 model exhibited an underestimation error at orchard located in Hwaseong. It projected a faster progression of the full bloom dates than the actual observations. This area is characterized by minimal diurnal temperature ranges, where the daily minimum temperature is high and the daily maximum temperature is relatively low. Therefore, to achieve a comprehensive prediction of the blooming date of ‘Fuji’ apples across South Korea, it is recommended to integrate a DM model for calculating the necessary chilling accumulation to break dormancy with a GDH model for estimating the requisite heat accumulation for flowering after dormancy release. This results in a combined DM+GDH model recognized as the most effective approach. However, further data collection and evaluation from different regions are needed to further refine its accuracy and applicability.
4,300원
30.
2023.10 구독 인증기관 무료, 개인회원 유료
Korean melon (Cucumis melo L.) is an environment in which most farming work can affect the increase in musculoskeletal diseases, and the stems are attracted to the ground in order to grow no-heating cultivation. In this study, growth and productivity were compared according to the type of high-bed. The narrower the surface area at the bottom of the high-bed, the faster the initial growth, which was advantageous. The bed is which the height if 70 cm, the surface temperature has risen due to the increase in direct solar radiation inflow since April, requiring side light blocking to block the inflow of solar radiation. In terms of fruit quality, the 200 cm width treatment had higher fruit sugar content and better hardness than the 160 cm treatment. From April to September, the total yield was 6.8 kg/plant of treatment A, 8.7 kg/plant of treatment B, 5.8 kg/plant of treatment C, treatment B mainly 50% higher than treatment C, and 27% higher than treatment A. Therefore, the bed form suitable for Korean melon high bed is 200 cm wide, 40 cm high between the surface and the bed, and the surface of the passage between the beds is 30cm high from the ground to the bed.
4,000원
1 2