쌀과 히솝을 이용하여 히솝쌀음료를 가공하고자 제조특성을 조사하였다. 히솝쌀음료의 제조조건은 amylase 함량(X1, 1~5 mL), 당화시간(X2, 10~18 hr) 및 히솝 함량(X3, 1.0~3.0 g)으로 당화 후 당도, 황색도, 관능적 특성을 반응표면분석을 통하여 모니터링 하였다. 당화 중 당 함량이 가장 많이 생성되는 조건은 amylase 함량 4.96 mL, 당화시간 14.93 hr 및 히솝 함량 2 g에서 9.62°Brix로 나타났다. 황색도인 Hunter’s color b가 가장 높게 나타나는 조건은 amylase 함량 1.90 mL, 당화시간 16.64 hr 및 히솝 함량 2.51 g에서 14.86°Brix로 나타났다. 색상에 대한 최대의 관능평점은 amylase 함량 4.60 mL, 당화시간 15.66 hr 및 히솝 함량 1.57 g에서 4.09로 나타났다. 향미에 대한 최대의 관능평점은 amylase 함량 3.46 mL, 당화시간 10.79 hr 및 히솝 함량 1.45 g에서 3.99로 나타났다. 맛에 대한 최대의 관능평점은 amylase 함량 3.67 mL, 당화시간 17.64 hr 및 히솝 함량 1.76 g에서 3.17로 나타났다. 소비자의 종합적인 선호도를 나타내는 전반적인 기호도는 amylase 함량 3.73 mL, 당화시간 13.66 hr 및 히솝 함량 1.85 g에서 3.61로 가장 높게 나타나 최적조건을 설정할 수 있었다.
일반적으로 진주광택안료(pearlescent pigment)라고 하는 광학적 특성을 나타내는 분체는 진주광택, 무지개 빛, 금속광택느낌을 주기 위해서 이용되는 광학적 효과를 갖는 안료이다. 현재 사용되고 있는 화장품용 진주광택 안료는 1965년 듀퐁사에 의해 개발된 이산화티탄 피복 운모 기판 안료의 형태가 주류를 이루고 있으며, 강한 광택과 선명한 간섭색상을 위하여 평활하고 깨끗한 표면의 기판(substrate)을 이용하는 경우나 기판 위에 단층이 아닌, 2 ~ 3 가지 성분을 광학적 설계에 의해 다양한 두께로 적층하여 기존의 단층 코팅 보다는 두께는 두껍지만 기존보다 우수한 광택과 채도가 높은 간섭색을 구현한 광간섭 분체도 화장품에 적용되고 있다. 본 연구에서는 강한 광택과 선명한 간섭색상을 위하여 두께를 두껍게 하지 않으면서 광 반사율과 간섭현상에 의한 색상의 채도가 높은 광 간섭 분체의 제조 방법에 대해 검토하고, 그 방법으로서 피복되는 이산화티탄의 전구체를 변화시키고, 목적으로 하는 간섭색을 구현할 수 있는 이산화티탄의 피복량을 분할하여 코팅 및 열처리를 통해 결정화함으로써 일반적인 단층 코팅의 간섭광을 갖는 간섭펄보다 높은 광 반사율과 채도가 높은 간섭광을 나타내는 광 간섭 분체를 개발하고자 하였다. 이와 같은 제조방법을 통해 개발된 광 간섭 분체는 피복된 이산화티탄 입자(grain)의 크기가 균일하고 조밀하게 피복된 것을 전자 현미경으로 확인하였고, XRD 측정을 통한 결정화 정도를 비교한 결과 본 연구의 공정으로 제조한 진주 광택안료가 일반적인 단층 코팅 간섭 펄 안료보다 우수한 것을 확인하였으며, 광반사율과 간섭색상의 채도도 단층 일반적인 단층 코팅 간섭 펄 안료보다 높다는 것을 알 수 있었다.
레스베라트롤(Resveratrol)은 천연 폴리페놀이며 피부 손상, 자외선 및 병원성의 공격으로부터 피부를 보호한다. 본 연구에서는 레스베라트롤을 함유한 에토좀의 최적의 제조 조건을 찾기 위해 시도하였다. 에토좀은 수화액정법을 응용하여 제조하였다. 에토좀의 봉입효율 및 입자 크기에 영향을 미치는 요인에 대하여 조사하였다. 에토좀의 입자 사이즈는 입도분석기를 이용하였다. 봉입효율은 HPLC를 이용하여 측정하였다. 에토좀 입자의 크기는 111.2 ~ 112.8 nm이고, 봉입효율은 81.25 ~ 88.75%임을 확인하였다. 최적의 제조 조건으로는 레시틴 : 레스베라트롤 : 콜레스테롤 : 에탄올 = 2.0 : 0.08 : 0.05 : 20.0% (w/w)의 비율로 제조된 경우임을 확인하였다.
In order to recover lithium ions from aqueous solution, a novel SAN-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with styrene acrylonitrile copolymers (SAN). The optimum condition for synthesis of SAN-LMO beads was 5 g of LMO and 3 g of SAN content. The characterization of the prepared SAN-LMO beads by SEM and XRD were confirmed that LMO was immobilized in SAN-LMO beads. The removal and the distribution coefficient of lithium ions decreased with increasing lithium ion concentration and solution pH. Even when the prepared SAN-LMO beads were reused 5 times, the leakage of LMO and the damage of SAN-LMO beads was not observed.
2013년 기준 대구광역시의 정수슬러지 발생량은 104.5 톤/일로 나타났으며, 이들 정수슬러지 중 약 23.2%가 대구소재 성서・서대구산업단지에 공업용수를 공급하는 J 정수사업소에서 발생한 것으로 나타났다. 이렇게 발생되는 정수슬러지는 하수처리 과정에 발생되는 슬러지에 비하면 많은 양이라고 볼 수 없지만, 정수장이 대형화 되고, 하천유량의 감소와 환경규제의 강화 등으로 하천이나 토양으로의 직접배출이 규제되면서 정수슬러지의 처리가 현안으로 부각되었다. 발생되는 모든 정수슬러지는 비용을 지불하고 시멘트의 원료로 처분되고 있어 처리비에 대한 부담이 큰 실정이다. 정수슬러지부터 유효한 알루미늄 자원을 함유하고 있음에도 불구하고 매립・해양투기에 의해 처리되거나 시멘트의 원료와 같이 제한된 산업 분야에서만 재활용되고 있는 실정이다. 아울러 정수슬러지 처리비용은 2013년 기준으로 톤당 35,000원으로 년간 약 15억원에 이르고 있으며, 처리 비용은 지속적으로 증가될 가능성이 높다고 알려져 있다. 이와 같이 단순 매립처분의 한계점이나 처리비용의 상승을 고려한다면, 정수슬러지의 다양한 활용 방안의 모색이 시급하다고 볼 수 있다. 이에 따라 본 연구에서는 기존 매립, 소각에 의해 처리되었던 정수슬러지로부터 알루미늄을 회수하는 방법들을 연구하여 기존 응집제와 총인 제거효율이 유사한 재생응집제로 제조하여 공공하폐수처리장과 산업단지 소재 기업들에 적용하고자 한다.
본 연구는 음식물류 폐기물 처리장에서 발생하는 부산물의 활성화 공정을 통해 제조된 친환경 활성탄의 공업분석, 요오드 흡착 성능, 메틸렌블루 등의 특성을 평가하고, 그로 인한 탁도 및 색도 제거능력을 연구하여 활성탄의 대체물질로서의 재활용 가능성을 평가하고자 한다. 실험에 사용된 실험재료는 B시 F사의 음식물류 폐기물 처리시설에서 발생하는 음식물류 폐기물 처리장 부산물을 함수율 10% 미만으로 건조한 후, 분쇄기로 100 mesh 이하로 하여 사용하였다. 연구에 사용한 실험 장치는 최고온도 1,200℃까지 유지 가능한 고온전기로를 사용하였고, 600℃ 90분의 친환경 활성탄 시료의 요오드 흡착 성능이 가장 높게 나타났으며, 한국 활성탄소공업협동조합 수처리용 분말활성탄 기준인 950mg/g 이상의 기준과 비교하였을 경우는 600℃ 90분의 975.11mg/g 및 700℃ 60분의 950.92mg/g이 기준에 만족하는 것으로 나타났다. 메틸렌블루 탈색력 역시, 요오드 흡착성능 분석과 마찬가지로 600℃ 90분의 친환경 활성탄 시료의 메틸렌블루 탈색력이 가장 뛰어나게 나타났다. 또한 대부분의 활성화 온도에서의 메틸렌블루 탈색력이 요오드 흡착 성능과 비슷한 양상을 나타냄을 알 수 있었다. 이와 같이, 본 연구에서는 음식물류 폐기물 처리장 부산물을 이용하여 제조된 친환경 활성탄의 활성탄 대체물질로서 재활용이 충분히 가능할 것으로 판단했다.
Hydrothermal Carbonization(이하 HTC), 열수탄화공정은 가수분해(加水分解)를 통해 유기성 폐자원을 에너지화 하는 기술로 함수율에 관계없이 다양한 재료에 적용할 수 있으며, 고위발열량 6,000kcal/kg 이상의 고효율의 고형연료를 생산할 수 있는 기술이다. 이에 본 연구에서는 0.1ton bench scale HTC 반응기를 이용하여 1) S매립지에 반입되는 건설폐목재를 활용하여 고열량 고형연료를 생산하고, 고형연료의 특성을 분석하였으며, 2) 고함수 유기성폐기물인 감귤박을 이용한 고형연료 생산 및 그 특성 분석을 수행하였다. 본 연구는 0.1ton 규모의 열수탄화(HTC) 회분식반응기를 이용하였다. 저함수율의 폐목재는 매립지로 반입되는 건설폐목재를 1 cm 미만으로 파쇄하여 사용하였다. 0.1ton 반응기에 목재 10kg, 용매(물) 50kg을 투입한 후폐쇄조건 상에서 가열을 진행하였다. HTC공정은 반응온도 260℃, 반응시간 1시간으로 운전되었다. 고함수 유기성폐기물인 감귤박은 제주도개발공사 감귤가공공장으로부터 제공 받아 고형연료 제조에 활용하였다. 감귤박의 경우, 분쇄나 별도의 용매(물) 투입 등의 전처리 없이 감귤박 원료만을 60kg 투입하여, 240℃, 반응시간 1시간으로 운전하였다. 실험결과, 건설페목재의 경우 원재료의 발열량은 고위발열량으로 약 4,340kcal/kg이었으나 열수탄화 후 약 6,920kcal/kg으로 증가하였다. 고함수 원료인 감귤박의 경우 고위발열량 약 4,360kcal/kg에서 열수탄화 후 고위발열량 약 6,690kcal/kg으로 증가하였다. 고정탄소율 역시 건설폐목재 고형연료와 감귤박 고형연료에서 각각 40.5%, 32.3%로 고열량 양질의 고형연료로 활용할 수 있음을 확인할 수 있었다.
국내외적으로 음성서비스, 인터넷 통신망 등의 통신시장이 대규모로 성장함에 따라 동 통신케이블은 수요가 급증하였다. 최근 유선통신 수요의 감소와 광케이블로의 시장 전환이 잇따르면서 동 통신케이블의 생산량은 줄고 있으나 국내기준으로 연간 25,000톤 이상의 생산량이 유지되고 있다. 동 통신케이블은 dry 케이블과 젤리충진케이블로 구분할 수 있으며, 젤리충진케이블이 약 65%의 점유율을 나타내어 dry 케이블보다 많이 이용된다. 광통신 사업의 발달과 노후 케이블의 교체로 인한 폐젤리충진케이블의 발생량은 연간 6,500톤 이상이며, 폐젤리충진케이블은 기름성분이 5%를 초과하는 지정폐기물이지만 관리 부실로 인하여 일반폐기물로 둔갑하거나 불법 수출되어 폐기되고 있는 실정이다. 젤리충진케이블은 설치작업 중 훼손 및 이물질 유입을 방지하기 위하여 외피 내측을 알루미늄박막으로 감싸고 있고 알루미늄박막 내부의 구리 세선 사이에 젤리형 물질을 충진한 형태를 의미한다. 폐젤리충진케이블은 고순도 구리가 다량 포함되어 있어 재활용의 필요성이 부각되고 있으며, Polyethylene (PE)을 주성분으로 하는 피복도 고형연료로써의 재활용이 가능하다. 본 연구에서는 젤리충진케이블에서 구리를 회수한 이후에 구리를 감싸고 있는 피복으로 고형연료를 제조하여 그 활용방안에 대하여 검토하였다. 젤리충진케이블은 고형연료로 재활용하기 위하여 원료에 대한 기본특성과 열적특성을 조사하였으며, 기본특성은 삼성분, 발열량을 측정하였고 열적특성은 TGA/ DTA 분석으로 검토하였다. 젤리충진케이블의 피복을 이용한 고형연료는 제조방안을 검토하여 평가하였으며, 제조한 고형연료는 자원의 절약과 재활용촉진에 관한 법률 시행규칙 [별표7] 고형연료제품의 품질기준에 비교하여 에너지원으로써의 가능성을 평가하였다.
초고압 쇼트 아크램프는 빛에 반응하는 물질(Photo-resist: PR, 감광액)이 코팅된 시료에 원하는 패턴이 형성된 마스크를 올려놓고 자외선을 쏘여 감광막에 원하는 패턴을 전사시키는 장치를 말하며 국내에서는 삼성, 엘지, SK하이닉스 등 디스플레이, 반도체 사업장에서 연간 약 2~3만개가 사용되며 시장은 연간 약 2천억원으로 추산된다. 이 공정은 FPD 제조 공정 중 비용 및 시간적 측면에서 30~40% 이상을 차지하는 최고 핵심 공정이지만, 국내 기술 미흡으로 그동안 일본등 선진국에서 장비 및 제품을 전량 수입하였으며, 초고압 쇼트 아크램프의 기술 수준이 매우 높고, 선진 기업의 엄격한 기술 통제로 인하여 기술적 접근이 어려워 디스플레이 5대 핵심 장비 중 유일하게 국산화에 성공하지 못하였다. 재활용 기술 역시 전무한 상태로 국내에서 발생되는 연간 약 2~3만개의 폐 초고압 쇼트 아크램프는 낮은 가격에 전량 일본으로 유출되고 있는 상황이다. 초고압 쇼트 아크램프는 금, 은, 동, 텅스텐, 몰리브덴, 탄탈륨등 고가의 유가금속으로 구성되어 있으며, 이를 회수하고 적절한 방법으로 재활용한다면 고부가가치 창출을 실현할 수 있을 것으로 판단되어진다. 본 연구에서는 물리적인 방법으로 폐 쇼트 아크 램프를 해체・분리하여 고가의 유가자원을 회수하고 회수된 전극 표면에 다시 정밀 코팅을 실시하여 전극을 재사용하는 전극 재제조 공정기술을 확립하고자 하였다.
우리나라 석회석은 CaO 기준 52% 이상 고품위 석회석이 12%에 불과하여 석회적 자원을 이용한 고부가가치화 산업이 상대적으로 떨어져 있는 상황이다. 시멘트용 석회석 품질 이하의 폐석회석 또한 많이 발생되고 있는데 석회석 광산 채굴 중 발생되는 폐석회석 발생량은 약 20~30% 정도에 이른다. 이러한 폐석회석은 주로 저부가가치 골재로서 활용되어 오거나 야적 처리되어 왔다. 폐기물 소각 시 소각부산물인 바닥재 및 비산재가 발생되며, 쓰레기 용융로에서는 용융슬래그 및 비산재가 발생되게 된다. 2011년 기준 용융슬래그는 약 23,490ton/yr 발생된 것으로 조사되었다. 발생된 용융슬래그는 일부 복토재나 벽돌의 원료로 사용되고 있으나 활용처가 뚜렷하지 못하여 대부분 방치되고 있는 실정이다. Geopolymer는 Davidovits에 의해 처음 명명되었고, Si-Al로 이루어진 재료가 알칼리용액과 반응하면 Si, Al 원소가 용출되고, 이를 반응시키면 중축합 화학반응을 일으켜 3차원 중합체 체인과 Si-O-Al-O결합의 링 구조를 형성하게 된다. 이 때, 다양한 알칼리액상 조건에 따라 지오폴리머의 물리․화학적 특성이 달라진다고 알려져 있다. 대부분 건축 자재의 경우 1,200℃ 이상의 고온에서 생성되어 고에너지를 소비하게 되는데 지오폴리머 기술을 사용하면 70℃에서 충분한 강도가 발현된다. 이에 본 연구에서는 폐석회석, 용융슬래그의 재활용률을 높이고자 지오폴리머 기술을 이용하여 단열블록을 제조하고자 하였다. 또한 제조한 단열블록의 열전도율을 낮추기 위한 방안으로 발포제 블랙 알루미늄 드로스를 첨가하여 블록을 제조하였으며, 이 때 제조 조건에 따른 블록의 물리적 특성을 평가하고자 하였다. 폐석회석, 용융슬래그 혼합비에 따른 단열블록의 열전도율, 압축강도, 재가열수축률, 부피비중, 기공율 등을 측정하였다. 그리고 도출된 최적조건을 통해 제조한 블록은 내화단열벽돌 기준 KS L 3301을 통해 활용가능성을 평가하였다. 이러한 특성으로부터 폐석회석을 사용하고 지오폴리머 기술에 의한 내화단열블록의 제조가 가능하다고 판단된다.
저활용 단백질로부터 칼슘 결합물질을 분리하기 위해 돼지 육골분과 진주담치 단백질을 단백질 분해 효소인 alcalase를 이용하여 가수분해물을 제조하였고, 체내 흡수가 용이한 3 kDa 이하로 한외여과 하였다. 돼지 육골분 가수분해물은 Mono Q 컬럼을 통해 분리하였고, 진주담치가수분해물의 경우 Q-Sepharose로 분리 하여 각각 2개, 3개의 peptide fraction을 얻어 각 fraction의 칼슘 결합력을 측정하였다. 그 결과 MBM F2와 Mussel F3에서 가장 높은 칼슘결합력을 나타내었고, 따라서 본 연구 결과로 얻어진 가수분해물들은 칼슘 보충 소재로 활용될 수 있다고 판단된다.
본 연구에서는 백미 발효물을 곡류 효소함유 식품으로 개발하고자Bacillus subtilis CBD2를 접종하여 96시간 발효한 다음 알긴산 및 키토산을 피복물질로 사용하여 분무건조 미세캡슐 분말을 제조하였고, 분말의 물리화학적 특성 및 amylase 활성을 조사하였다. 백미 발효물의 생균수, pH 및 amylase 활성은 각각 7.61 log CFU/mL, pH 5.08 및 159.43unit/mL이었다. 백미 발효물의 미세캡슐 분말 제조는 알긴산 1.0% 및 키토산을 각각 0.3%, 0.5%, 1.0%를 첨가하여 분무건조 하였다. 분무건조 미세캡슐 분말의 수분함량은 2.90~3.68%였으며, 색도는 키토산 첨가량이 증가함에 따라 L값 및 a값은 감소하고, b값 및 △E값은 상대적으로 증가하였다. 입자크기는 분무건조 미세캡슐 분말에서 48.13~68.48 μm로 동결건조 분말 357.87 μm 보다 작으며, 표면구조는 전반적으로 구형을 나타내었으나, 키토산 함량이 증가함에 따라 표면 굴곡이 증가하였다. 수분흡수지수는 분무건조 미세캡슐 분말에서 2.40~2.65로 동결건조 분말 2.66에 비해 낮은 흡수지수를 나타내었으며, 수분용해지수는 분무건조 미세캡슐 분말에서 9.17~10.89%로 동결건조분말(7.12%)보다 높게 나타났다. 생균수 및 amylase 활성은동결건조 분말에서 각각 7.01 log CFU/g 및 506.02 unit/g으로 나타났으며, 분무건조 미세캡슐에서는 각각 4.46~4.62log CFU/g 및 196.63~268.57 unit/g으로 나타나 동결건조 분말 보다 낮게 나타났다. 분말의 인체 내 소화 모델에서,모든 분말은 pH 1.2의 인공위액에서 활성을 나타내지 않았으며, 최종적으로 pH 7.4의 대장조건에서 알긴산에 0.3%의 키토산을 첨가한 분무건조 미세캡슐 분말이 85.93%의amylase 활성을 나타내어 인체에서의 높은 이용률이 기대되었다.
As environmental concerns become a critical issue in the sustainability of the steel industry, manufacturing of various kinds of glass-ceramics and related functional materials recycled from post-mortem slags has become an important topic of research.
The slag composition, which was reduced and cooled using this secondary treatment is affected by the operating parameters and thermo-physical properties of the slag, and thus can provide the potential for utilization in highly value-added products such as Portland cement and high-alumina cement. To increase the applications of the reduced slag product, a new cement material as well as slag aggregates from the EAF slags were developed by controlling the composition and morphology through novel methods.
The purpose of this study is to examine whether cementitious powder separated from waste concrete can be used as the alternative raw material for limestone and reducing the usage of natural resource (limestone) and CO2emission based on recycling cementitious powder from waste concrete.
Therefore, to reduce waste and CO2 emission in the cement industry and develop recycled cement, mix design was deducted by multi-objective optimization.