본 연구에서 광촉매 종류 및 혼입율에 따른 역학적 특성 및 질소산화물 제거 특성을 평가하였고 보다 경제적이고 효율적인 광촉매 콘크리트 제조를 위해 분할 타설하는 방법에 대해 검토하였다. 그 결과 광촉매 혼입률이 5%일 때 가장 높은 압축강도와 탄성계수가 측정되었다. 광촉매 반응에 의한 질소산화물 제거 성능평가 결과 광촉매 혼입률이 증가함에 따라 질소산화물 제거율이 증가하였다. 이때 광촉매 P-25의 질소산화물 제거성능은 NP-A보다 우수하였다. 경제성을 고려하여 콘크리트 표면의 일정 두께를 광촉매 콘크리트로 타설하는 분할 타설 방안을 제안하였고, 이때의 일체화 성능을 평가하였다. 그 결과 역학적 성능 및 내구성능이 Plain에 비해 동등 이상으로 나타나 일체화 거동을 만족하는 것으로 판단된다.
In this study, an effective maintenance and management strategies were discussed to secure a structural safety of small-scaled timeworn buildings in Seoul. The structural vulnerable characteristics should be analyzed to fix the order of priority on maintenance and management of lots of buildings. This study could be used for a policy establishment of Seoul.
본 연구에서는 분쇄한 순환골재 분말(RAP)을 건설소재로 활용하기 위하여 순환골재 및 RAP의 재료적 특성을 파악하고, 시멘트 대체재로 RAP를 적용한 모르타르의 물리·역학적 특성을 분석하였다. RAP 입도분석결과, 볼밀 시간이 증가함에 따라 0.6mm 입도의 분포량이 증가하고, 조립률은 감소하는 것으로 나타났다. RAP를 치환한 모르타르의 유동성은 Plain 보다 향상되었으며, 이는 RAP를 결합재 대체재로 적용함으로서 잉여수의 증가하고 이로 인해 유동성이 증가된 것으로 판단된다. RAP를 적용한 모르타르의 압축강도 평가 결과, 치환율이 증가함에 따라 압축강도가 낮아지는 경향을 나타내었지만, 약 10%까지는 치환하여 사용가능한 것으로 판단된다. 이상의 연구로부터 분말화한 순환골재는 잔골재 대체재로서도 품질특성을 만족할 수 있는 것으로 나타났으며, 본 연구 범위에서는 결합재 대체재로 약 10% 적용시 유동성 개선 및 강도 확보가 가능할 것으로 판단된다.
Curcumin (C21H20O6) is a hydrophobic polyphenol found in turmeric. Although curcumin has been used as a natural medicine, its major limitation is related to poor absorption from the gut. Therefore, we developed a method for preparation of Curcumin Nanospheres (CN) to improve the aqueous-phase solubility of curcumin and investigate the functional role of CN in promoting feed efficiency and odor reduction in mice. CN showed inhibitory effects on actate dehydrogenase (LDH) cytotoxicity induced by ecotoxic substance toluene in gut epithelial HCT116 cells. In addition, the weights of internal organs (liver, heart, kidneys, and spleen) and the levels of serum Glutamate Oxaloacetate Transaminase (GOT), Glutamate Pyruvate Transaminase (GPT), and LDH did not show significant differences between mice administered oral CN for two weeks and compared to the control group. Interestingly, CN not only reduced hydrogen sulfide (H2S) and ammonia (NH3) levels and fecal odor, but also improved feed efficiency in mice. These results demonstrate that oral nano-delivery of anti-ecotoxicological CN is a functional system to deliver curcumin to the gut to improve feed efficiency and reduce fecal odor in mice.
This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.
This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/ day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.
본 연구는 우리나라의 1990-2014년 시계열 자료를 활용하여 물 효율성, 경제성장, 전력생산 및 이산화탄소 배출 간의 장·단기 인과관계를 실증적 으로 분석하였다. 기존 연구들이 경제성장, 이산화탄소 배출 및 전력 및 에너지에 국한되어 분석을 한 반면 본 연구는 기존 변수들과 더불어 물 효율성과의 관계를 설명하였다는 기여를 가지고 있다. 실증분석결과를 살펴보면, 네 변수들은 단기조정관계를 통해 장기적으로 균형상태에 도달한다는 것과 변수들 간의 인과관계에서 이산화탄소 배출과 경제성장은 물 효율성의 원인이 되고 이산화탄소 배출과 경제성장 및 물 효율성은 전력생산의 원인이 된다는 사실을 발견하였다. 또한 물 효율성에 대한 장기 영향계수 추정결과를 통해 전력생산의 증가와 경제성장 및 이산화탄소 배출의 감소는 물 효율성을 증가시키며, 일정 수준 이상의 경제성장은 물 효율성의 증가속도를 감소시킨다는 경제성장과 물 효율성의 역U자형 관계를 확인하였다.
In this study, we evaluated the photocatalytic oxidation efficiency of aromatic volatile hydrocarbons by using WO3–doped TiO2 nanotubes (WTNTs) under visible-light irradiation. One-dimensional WTNTs were synthesized by ultrasonic-assisted hydrothermal method and impregnation. XRD analysis revealed successful incorporation of WO3 into TiO2 nanotube (TNT) structures. UV-Vis spectra exhibited that the synthesized WTNT samples can be activated under visible light irradiation. FE-SEM and TEM images showed the one-dimensional structure of the prepared TNTs and WTNTs. The photocatalytic oxidation efficiencies of toluene, ethylbenzene, and o-xylene were higher using WTNT samples than undoped TNT. These results were explained based on the charge separation ability, adsorption capability, and light absorption of the sample photocatalysts. Among the different light sources, light-emitting-diodes (LEDs) are more highly energy-efficient than 8-W daylight used for the photocatalytic oxidation of toluene, ethylbenzene, and o-xylene, though the photocatalytic oxidation efficiency is higher for 8-W daylight.
This study was conducted to evaluate the effects of green manures and complemental fertilization with oil cake or liquid fertilizer on growth and nitrogen use efficiency of Chinese cabbage cultivated in organi systems. Field experiments were carried out at the National Institute of Agricultural Science in Suwon, South Korea from 2012 to 2014. Two green manure crops, Crotalaria and Hairy vetch, was cultivated in summer and in winter, respectively. The application methods of the green manure consisted of three tillage systems (overall tillage, partial tillage and no tillage). Oil cake and liquid fertilizer were used as complemental fertilizer. The results showed that when used as covering material in the upland soil without tillage, green manure fertilization was more effective in increasing growth and yield of Chinese cabbage than when incorporated into soil. It was possible to grow and harvest Chinese cabbage in the spring season by the application of hairy vetch as winter green manure. The higher yield of Chinese cabbage with green manure application was caused by the lower incidence rate of soft rot and tip-burn. The yield of the Chines cabbage that received green manure applications over two consecutive seasons followed by the supplemental fertilization with oil cake was similar to that of the conventional chemical fertilization. Following a single season green manure application in summer, however, the yield of cabbage was only about 70% of the conventional treatment. Green manure cultivation with additional liquid fertilization produced a yield similar to the conventional fertilization treat-ment, soil inorganic nitrogen concentration remained stable and the nitrogen use efficiency increased in the green manure applied soil. In conclusion, the organic cultivation of Chinese cabbage in the autumn season could be outperformed in the upland soil receiving two seasons (winter and summer) of green manure fertilization followed by the supplemental fertilization with liquid fertilizer.
Domestic automotive shredder residue (ASR) recycling facilities must comply with 60% of the energy recovery criteria calculated by the waste control act, based on resource circulation of electrical and electronic equipment and vehicles. The method of calculating energy recovery criteria was newly enacted on November 6, 2017, and it has been judged that it is necessary to consider applicability. In this study, the energy recovery efficiency of 7 units was calculated by past and present calculation methods. Furthermore, this study attempts to find applicability and a method of increasing the energy recovery efficiency by taking advantage of available potentials. An analysis of the calculation results showed that the average values calculated by past methods, present methods, and the method that includes available potentials are 76.35%, 70.68%, and 78.24%, respectively. Therefore, the new calculation method for energy recovery efficiency is also applicable to domestic automotive shredder residue recycling facilities.
Background : The 1,2-unsaturated PAs, reported to be widely present in medicinal plants belonging to Asteraceae, Boraginaceae, and Fabaceae, cause hepatotoxicity and genotoxicity in humans and animals. Hence, there is a need for an analytical method that allows these dangerous plant toxins to be determined. In this study, we developed a method that can be used for the rapid and accurate determination of nine toxic PAs in medicinal plants using ultra-pressure liquid chromatography–electrospray ionization–quadrupole–time-of-flight mass spectrometry (UPLC-ESI-Q-TOF).
Methods and Results : The compounds were eluted onto a C18 column with 0.1% formic acid and acetonitrile, and separated with good resolution within 11 min. all analytes was characterized by its precursor ions generated by ESI-Q-TOF and fragment ions produced by collision-induced dissociation (CID), which were used as a reliable database. The proposed analytical method was verified with reference to the ICH guidelines. The proposed UPLC-ESI-Q-TOF method was applied to four medicinal plants, and lycopsamin, echimidine, senkirkine and senecionine were detected by matching with reference standard, and additional six PAs were tentatively identified though chemical profiling. In addition, the QuEchERS method was the most efficient in comparison with methods like hot water and methanol in extraction efficiency of pyrrolizidine alkaloids.
Conclusion : The our proposed method can determine PAs rapidly and accurately in medicinal plants and will be utilize as an important data for other researchers who need analytical information of PAs.
동시 합성 보정 효과는 검출기의 효율이 향상할 때 그리고 선원과 검출기 사이의 거리가 가까울수록 크게 나타나는 것으로 알려져 있다. 점 선원(60Co)을 사용하여 검출기 중심축 방향 및 방사상 방향에서 거리에 따른 변화를 주어 P/T 비를 구하여 동시합성 보정을 하였다. 따라서 본 연구에서는 중심축 및 방사상 방향에서 동시합성 보정한 값들을 혼합부피선원(450 mL CRM source)에 적용하여 P/T에 따른 전체 피크효율 변화를 Geant4과 비교하였다. 또한 검출기와 시료가 아주 밀착된 상태에서 맵핑법에서 구한 효율을 환경시료 중에서 해양 시료인 미역에 적용하여 P/T 비의 적합성을 평가하고자 한다. 500 keV 이상의 효율의 영향을 받는 에너지 영역에 1,836 keV로 보정한 효율을 적용한 결과 측정값과 보정값의 상대오차는 3.2 % peak 효율이 보정되어 잘 일치하였다. 450 mL CRM source처럼 부피가 커질수록 P/T 비는 ± 5%까지 감소하였다. 이것은 검출기로부터 선원이 멀어짐에 따라 방출된 감마선의 산란이 많아지기 때문이며, 이처럼 P/T 변화는 동시합성 보정 피크 효율에 영향을 줌을 확인하였다.
This paper proposed the measures that to predict changes in the state of the individual tunnels, and maintenance costs during its life cycle by using the big data of tunnel facilities. This is expected to be used to efficiently establish long term maintenance plans for tunnels based on data-based engineering analysis.
Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane (CH4) from the anaerobic digestion process; and third, to promote CH4 production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), CH4 production, and biodegradability.
The treatment of sewage sludge using hydrothermal carbonization (HTC) can be an attractive alternative to conventional sludge disposal, but it should be accompanied by a drying process that uses Refuse-derived Fuel (RDF). However, the largest proportion of the energy demand in sludge-drying techniques is for heat sources, which has led to increased operation and maintenance costs. Recovering residual heat to apply to sludge drying significantly reduces both the operating cost and the greenhouse gas emissions. Suitable integration can be realized between drying technology and waste-to-energy (WtE) plants through the recovery of waste heat in WtE conversion as a heat source for sludge drying. This present paper investigates the indirect disk drying performance of the hydrothermal carbonization of sewage sludge using a low-temperature heat source in a laboratory and proposes an integration process with the drying technology of hydrothermal carbonization using waste heat. This paper concludes with experimental results that indirect disk drying technology can be applied in waste-heat recovery systems.
코아세르베이트의 구조는 모발의 오일 및 폴리머 같은 기능성 성분 흡착에 매우 큰 영향을 준다. 본 연구 의 목적은 알킬 셀룰로오스와 구아검 간 복합 코아세르베이트의 혼합물에서 그 구조적인 결합의 특성을 밝히는 데 있다. 모발에 흡착되면 모발에 뻣뻣함을 부여하는 구아검 컨디셔닝 폴리머가 오일과 함께 알킬 셀룰로오스와 혼합될 경우 동일 함량 및 알킬 셀룰로오스와의 비가 3 : 1일 경우에 모발을 매우 부드럽게 함을 발견하였다. 이는 글루코스링을 백본으로 하는 양이온 알킬기 셀룰로오스 폴리머와 구아검 폴리머를 혼합하여 오일을 결합시키면, 알킬 셀룰로오스의 친수성 부위와 음이온 계면활성제가 정전기적으로 결합하고, 알킬 셀룰로오스의 4급 알킬 암모늄기에 포함되는 알킬기가 계면활성제의 소수성 부위와 함께 결합함과 동시에, 구아검 코아세르베이트가 전체적으로 안정적인 구조를 이루게 하여 많은 양의 코아세르베이트를 생성하게 하는 것을 코아세르베이트 생성양 측정 및 모발 유연성 증대를 통해 확인하였다.
본 연구는 우리나라 최대 항만인 부산항의 남외항 정박지를 VTS(Vessel Traffic Service)에서 효율적으로 관리하는 방안을 제시하기 위해 정박선간 적정한 영역감시(Domain Watch)를 산정하는 데 목적이 있다. 이를 위해 영역감시 산출 방법을 제시하고 최근 정박지 이용 현황 중 정박선이 가장 많았던 기간에 선박 길이(L), 정박선간 거리( Dij), 영역감시 반경(R), 선박 길이 대비 영역감시 반경(R/L)을 1시간 간격으로 조사하였다. 조사된 자료에 대해 기술 분석을 한 결과, 정박선 한 척이 다른 정박선과 안전거리를 확보할 수 있는 최소 R/L을 조사된 전체 자료의 70 %ile(백분위수)에 해당하는 2.85를 기준으로 산정할 수 있었다. 이 결과를 부산항 남외항 정박지에 적용하여 이를 ‘항만 및 어항 설계 기준(2014)과 비교한 결과 상당 부분 일치하였고, 이를 통해 VTS에서 정박선의 영역감시 반경을 최소 2.85L 이상으로 설정하는 것이 타당함을 확인하였다. 본 연구는 정박지 안전 관리를 VTS 차원에서 검토한 것으로, 부산항과 같은 집단 정박지를 운영 중인 타 항만에 적용할 경우 정박지를 이용하는 선박의 안전과 VTS의 안전 관리 방안 마련에도 기여할 수 있을 것으로 기대된다.
Obstacle avoidance is one of the most important parts of autonomous mobile robot. In this study, we proposed safe and efficient local path planning of robot for obstacle avoidance. The proposed method detects and tracks obstacles using the 3D depth information of an RGB-D sensor for path prediction. Based on the tracked information of obstacles, the paths of the obstacles are predicted with probability circle-based spatial search (PCSS) method and Gaussian modeling is performed to reduce uncertainty and to create the cost function of caution. The possibility of collision with the robot is considered through the predicted path of the obstacles, and a local path is generated. This enables safe and efficient navigation of the robot. The results in various experiments show that the proposed method enables robots to navigate safely and effectively.
This paper presents about design efforts of a human-sized quadruped robot leg for high energy efficiency, and verifications. One of the representative index of the energy efficiency is the Cost of Transport (COT), but increased in the energy or work done is not calculated in COT. In this reason, the input to the output energy efficiency should be also considered as a very important term. By designing the robot with customized motor housing, small rotational inertia, and low gear ratio to reduce friction, high energy efficiency was achieved. Squatting motion of one leg was performed and simulation results were compared to the experimental results for validation. The developed 50 kg robot can lift the weight up to 200 kg, and during squatting, it showed high energy efficiency. The robot showed 71% input to output energy efficiency in positive work. Peak current during squatting only appears to be 0.3 A.
‘게임 스토리’의 구성은 게임 플레이와 개발 환경을 반영하는 모습을 보여야 한다. 그러기 위해서 텍스트 기반의 스토리텔링 방식을 벗어나, ‘시공간 좌표 배열’ 이라는 좌표 형식을 차용해 보았다. 스토리에서 시간이 기준인 ‘액션’과 공간이 기준인 ‘오브젝트’ 간의 관계를 중심으로 스토리를 서술하기 위한 방식을 만들고자 했다. 그를 위한 하나의 방법으로 시공간 배치가 유저의 의사결정에 큰 비중을 차지하는 추리게임을 이용하여서 개념을 분석해보았다. 그 결과 시공간 좌표 배열 방법이 게임플레이를 담는 에디터, 개념도로 사용하기에 문제가 없는 설정 도구 라는 것을 확인할 수 있었다.