Two way grid single-layer domes are of great advantage in fabrication and construction because of the simple fact that they have only four members at each junction. But, from a point of view of mechanics, the rectangular latticed pattern gives rise to a nonuniform rigidity-distribution in the circumferential direction. If the equivalent rigidity is considered in the axial direction of members, the in-plane equivalent shearing rigidity depends only on the in-plane bending rigidity of members and its value is very small in comparison to that of the in-plane equivalent stretching rigidity. It has a tendency to decrease buckling -strength of dome considerably by external force. But it is possible to increase buckling strength by the use of roofing covering materials connected to framework. In a case like this, shearing rigidity of roofing material increases buckling strength of the overall structure and can be designed economically from the viewpoint of practice. Therefore, the purpose of this paper, in Lamella dome and rectangular latticed dome that are a set of 2-way grid dome, is to clarify the effects of roofing covering materials for increasing of buckling strength of overall dome. Analysis method is based on FEM dealing with the geometrically nonlinear deflection problems. The conclusion were given as follows: 1. In case of Lamella domes which have nearly equal rigidity in the direction of circumference, the rigidity of roofing covering materials does not have a great influence on buckling-strength, but in rectangular latticed domes that has a clear periodicity of rigidity, the value of its buckling strength has a tendency to increase considerably with increasing rigidity of roofing covering materials 2. In case of rectangular latticed domes, as rise-span-ratio increases, models which is subjected to pressure -type-uniform loading than vertical-type-uniform loading are higher in the aspects of the increasing rate of buckling- strength according to the rate of shear reinforcement rigidity, but in case of Lamella dome, the condition of loading and rise-span-ratio do not have a great influence on the increasing rate of buckling strength according to the rate of shear reinforcement rigidity.
양이온만을 선택적으로 투과하는 양이온교환막의 응용분양에는 electrodialysis, deffusion dialysis, reverse osmosis, membrane electrolysis, membrance fuel cell 등이 있다. 현재 사용화된 양이온교환막들은 좋은 성능과 안정성을 가지고 있지만 가격이 너무 비싸고 일부응용분야에 최적화 되지 않은 문제를 가지고 있다. 이를 해결하기 위해 많은 연구가들은 저렴하고 생산이 용이하며 각 응용분야에 적용 가능한 여러 가지 양이온교환막의 소재에 대한 연구를 진행하여 왔다. 그 소재들의 소개와 이를 이용한 양이온교환막의 성능과 특성에 대하여 기술하였다.
The actual overall migration data obtained from plastic food packaging materials into food simulants under high temperature testing conditions as described in the regulations of European Union, USA, and Korea or Japan were compared. Overall migration values(OMVs) with non-fatty food simulants under high temperature conditions were observed to be generally below 2.5 mg/dm^2 except polyamides(CPA and PA 6,6) which were tested at 121 for 2 hrs. As for the fatty food simulants, the OMVs with soybean oil were higher than other simulants. Among the films tested, PVC wrap showed higher OMVs ranging betwn 23.9 and 54.6 mg/dm^2 than others. The OMVs were measured at higher level with the elevation of contact temperature and the extension of contact time, and in fatty food simulants rather than in non-fatty simulants. Under similar testing temperature and time conditions. the OMVs tended to be increased in polar films like PA with polar simulants, and contrarily in non-polar films like PO with non-polar simulants. It is noteworthy that a discrepancy with regard to the result of OMVs was observed for some films as a result of different migration testing methods and conditions of each country areas.
The individual rotten water purification tank recently discharges wastewater and sewage through the outlet without purification ability. The outlet water and affiliated water purification tank with microorganism cultivator tank cultivates microorganism and then drops the value BOD, COD of sewage and discharges the quality of water into the outlet. The blower and water pump operating continuously prompts the waste of energy and deterioration of equipment. Each room of deposition tank, foaming tank, microorganism cultivator tank is equipment with the sludge detection senses so it can detect the density of each room. The power-drive plant of the blower and water pump which are the system cultivating the microorganism must be made as fuzzy controlization (If the sludge amount of each room become higher, the rate of operation of blower and water pump must heighten, on the contrary, in case of row sludge amount, the total handling amount and microorganism handling amount of each room of control. Tank reducing the rate of operation must be DB. At present, the blower amount in proportion to the sludge and oxyzen demanding amount has to control. Each room mus be checked outlet level of the outlet, also each room must flow backward discharge materials, and must operate feed-back control until we want to be come as a below value of BOD/COD(10PPM ; KS).
A series of microcapsule were synthesized by using several PCM(Phase Change Material) as a core material and gelatin/arabic gum, melamine/formaldehyde as a shell material. Coacervation technique and in situ polymerization were adopted in synthesizing microcapsules. In the microencapsulation by coacervation, tetradecane and octadecane were used as core materials. In the microencapsulation by situ polymerization tetradecane, pentadecane, hexadecane, heptadecane, octadecane, and nonadecane were used as core material. The synthesized microcapsule was examined to observe the shape of the microcapsule. The particle size analysis was performed by particle size analyzer. The thermal properties(e.g. melting point, heat of melting, crystallization temperature, heat of crystallization, differences between melting point and crystallization temperature) were obtained by DSC(Differential Scanning Calorimeter). The stirring rate effect was investigated during the microencapsulation. It was found that with increasing the stirring rate much smaller microcapule was produced. However, this did not necessarily lead to formation of spherical microcapsule.
The individual rotten water purification tank recently discharges wastewater and sewage through the outlet without purification ability. The outlet water and affiliated water purification tank with microorganism cultivator tank cultivates microorganism and then drops the value BOD, COD of sewage and discharges the quality of water into the outlet. The blower and water pump operating continuously prompts the waste of energy and deterioration of equipment. Each room of deposition tank, foaming tank, microorganism cultivator tank is equipment with the sludge detection senses so it can detect the density of each room. The power-drive plant of the blower and water pump which ate the system cultivating the microorganism must be made as fuzzy controlization (If the sludge amount of each room become higher, the rate of operation of blower and water pump must heighten, on the contrary, in case of row sludge amount, the total handling amount and microorganism handling amount of each room of control. Tank reducing the rate of operation must be DB. At present, the blower amount in proportion to the sludge and oxygen demanding amount has to control. Each mom must be checked outlet level of the outlet, also each room must flow backward discharge materials, and must operate feed-back control until we want to be come as a below value of BOD/COD(10PPM ; KS).
Basic materials for various making gangjung, various concentration 0-25.0%(w/v) of coating agent and 0-20.0% of substitutional materials carried out an experiment in sensory evaluation, expansion rate and hardness of substitutional materials. The results are as follows: 1. Added coating agent for improvement of decreasing aroma, arabic gum and dextrin signiffcant from 20.0% to 25.0% compared with others. A good results flavor strength score and hedonic score of added 20.0% arabic gum are highest. 2. Expansion rate is caused by substitutional waxy rice, expansion rate decreased above 20.0% as tapioca above 5.0%, rice above 10.0%, brown waxy rice and wheat flour 15.0%. 3. After flying gangjung of substitutional materials, hardness increase concentration of substitutional materials. Therefore substitutional materials added to tapioca below 5.0%, rice and wheat flour 10.0%, brown waxy rice 15.0% is thought of good.
The effect of grain refinement of the strength and ductility of metallic materials is investigated. A model in which a single phase material is considered as an effectively two-phase one is discussed. A distinctive feature of the model is that grain boundaries are treated as a separate phase deforming by a diffusion mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanism. Deformation of the grain interior phase is assumed to be carried by two concurrent mechanisms: dislocation glide and mass transfer by diffusion. The model was exemplified by simulating uniaxial tensile deformation of Cu down to the nanometer grain size. The results confirm the observed strain hardening behaviour and a trend for reduction of ductility with decreasing grain size at room temperature.
본 연구는 R-B & HDDR process를 적용해서 Nd-Fe-B계 회토류 이방성 본드자석의 제조를 위한 기초 데이터를 확보할 목적으로. 환원확산법을 사용해서 Nd-Fe-B계 자석합금분말을 제조하는 데 필요한 금속 Ca에 의한 Nd2O3의 환원반응과 Fe-B합금분말중에서의 Nd확산반응을 조사하였다. 그 결과 Nd2O3의 환원시 필요한 최적의 Ca첨가량은 1000˚C에서 1h동안 R-D 반응후 Nd 및 B원소의 수율관계로부터 이론당량의 1.3배정도가 적량인 것으로 나타났다. 또한 Fe-B합금분말중에 Nd의 확산과 관련된 XRD의 분석결과에 따라 완전한 균질화를 위해서는 1100˚C에서 45min정도의 R-D반응이 필요하였으며, R-D반응에 대한 Nd의 수율도 그 조건에서 최대로 얻어졌다. 그리고 수세후의 최종 분말시료중에 잔류하는 Ca 및 O2량을 ICP발광분석 및 산소분석기에 의해 분석한 결과, 각각의 함유량은 0.17 및 0.42wt%정도가 검출되었다
원자력발전소의 1차 계통에서 오염된 장비들을 취급이 용이하고 안전하게 운반하기 위한 운반용기는 내부의 방사성 물질에 대한 방사능 평가에 의하여 방사성물질 A형 운반용기로 분류된다. 방사성물질 A형 운반용기는 IAEA Safety Standard Series No. ST-1 및 국내 원자력법 등 관련규정의 기술기준을 만족하여야 하는데, 운반용기는 중량에 따라 0.31.2m의 높이에서 소성이 일어나지 않는 단단한 바닥면으로 가장 심각한 손상을 주는 방향으로 낙하시키는 정상운반조건(normal transport conditions)에 대하여 구조적 건전성을 유지하여야 한다. 여기서는 ABAQUS/Explicit 코드를 이용하여 컨테이너형태의 A형 운반용기에 대하여 최대손상이 야기되는 0.9m 경사낙하조건에 대한 3차원 충격해석을 수행하고 구조적 건전성을 평가하였는데, 운반용기는 경사낙하시 코너피팅(corner fitting)의 분쇄(crush)에 의하여 대부분의 충격을 흡수하였으며 운반용기의 격납경계는 구조적 건전성을 유지하였다.
본 연구는 재생골재를 도로의 보조기층재료 및 포장용 콘크리트 골재로 사용하기 위하여 수행되었다. 우선 보조기층재료로서의 활용성 여부를 파악하기 위하여 실내다짐시험, CBR 시험, 평판재하시험을 수행하였으며, 콘크리트용 골재로의 활용성을 보기 위하여 재생골재 첨가비율을 0, 20, 40, 60, 80%로 하여 설계기준강도 280kgf/cm2인 표층용 콘크리트를 제조하였다. 제조된 콘크리트로 굳지 않은 콘크리트 성질과 28일 양생 후 강도시험과 동결 융해에 따른 내구성 시험을 통해 폐콘크리트 재생골재의 활용성을 도로포장재료 측면에서 검토하였다. 실험결과 재생골재는 보조기층재료로서의 사용이 충분히 가능하며 표층용 콘크리트 골재로서 재생골재 첨가비율 40%까지 활용이 가능함을 알 수 있었다.