This study measured and analyzed the discharge concentration and characteristics of odor substances emitted from the discharge outlets of asphalt manufacturing facilities in South Korea. Measured factors included flow rate, composite odors, and 22 designated odor substances. After applying the dilution factor of composite odors emitted from 33 asphalt manufacturing facilities located in various regions to the composite odor emission standard of 500 times, it was found that more than half of these facilities exceeded the emission standard. The contribution rate of the designated odor substances from the discharge outlets was the highest for acetaldehyde at over 50%, followed by hydrogen sulfide and methyl mercaptan. The correlation between composite odors and the concentration of major designated odor substances was analyzed, and it was found that methyl mercaptan and acetaldehyde showed some correlation with the composite odor dilution factor. The methyl mercaptan odor intensity corresponding to the odor intensity of 4.5 to 5 ppb, which is the allowable odor dilution multiple emission standard of the odor emission source outlet, was estimated to be approximately 1.6 to 2.2 ppb, and the corresponding methyl mercaptan emission concentration range was estimated to be 0.98 to 2.02 ppb. The composite odor emission coefficient of asphalt concrete manufacturing facilities was estimated to be higher for general asphalt concrete than for asphalt concrete recycling facilities, and the composite odor emission coefficient of newly produced general asphalt concrete was estimated to be greater than that of recycled asphalt concrete. In terms of fuel usage, the composite odor emission coefficient of facilities that used Bunker C fuel oil was estimated to be higher than that of facilities powered by LPG and LNG fuel. It was deemed necessary to select 2 to 3 major designated odor substances that are correlated with the composite odor dilution factor for each major odor emission source, set the designated odor substance concentration corresponding to the composite odor dilution factor emission allowance standard, and review a plan to monitor the designated odor substances at the emission point.
As global greenhouse gas reduction regulations are strengthened and the demand for eco-friendly energy increases, renewable energies, including offshore wind power, are growing rapidly. Unlike onshore wind power generation, offshore wind power is located in the ocean. As a result, the offshore wind power substructure is exposed to low temperatures, corrosion, and continuous fatigue loads. Therefore, selecting appropriate materials and welding techniques is crucial for durability. In this study, FCAW welding was performed on S355ML steel (EN10025) for offshore wind power applications. After the welding process, the mechanical properties of the welded joint were evaluated through tensile, low-temperature impact, and hardness tests to assess the welding condition. The study revealed that the tensile and yield strength of the welded joint were superior to those of the base material. Additionally, the impact strength at low temperatures was confirmed to exceed the standard.
본 연구는 합성 아질산염 대체 천연보존료로 개발하고자 천연물 유래 복합추출물(NP-NAP, NP-NAMR)의 성분 특성 과 소시지에의 적용 시 품질 특성을 규명하였다. NP-NAP 와 NP-NAMR 0.5-1.0% (w/v)는 90.1-100%의 ABTS 라디 칼 저해능과 10 mg/mL에서 각각 811 μM 및 770 μM trolox 상당의 FRAP 활성을 보였다. NP-NAP와 NP-NAMR은 S. aureus와 L. monocytogenes, E. coli 및 S. Typhimurium에 대 해 0.1% (w/v)에서 99.99-100%의 감소율을 보였고 C. perfringens에 대해 1%와 2% (w/v)에서 각각 89.0-91.4%와 84.7-100% 이상의 감소율을 보였다. 천연 복합추출물 첨가 소시지 시제품의 냉장 중 품질 특성에서 4주 차 pH (6.43- 6.57)와 NP-NAMR 첨가 시 높은 a 값(23.54% 및 28.81)을 확인하였다. Springiness와 cohesiveness는 NP-NAP 1%가 높 았으나 다른 모든 시험구는 양성 대조구와 유의적 차이가 없었다(P<0.05). 냉장 중 평균 MDA (0.87-1.183 μM)는 양 성 대조구(0.93-0.96 μM)와 유사하였으며(P<0.05) 총 증가 균수(log CFU)는 1% 첨가(1.10-1.32) 시 nitrite pickling salt (NPS) 0.08% (1.31)과 유사하였고 2% 첨가 시(0.17-0.49)는 commercial product from Spain (CPS) 1% (0.53)보다 적었 다. 종합적 기호도는 NP-NAMR 2% 제외한 모든 시험구는 통계적 유의차가 없었다. 이상의 결과, 과채 추출물 유래 NP-NAP와 NP-NAMR은 항산화, 항균 활성과 안정적인 적 색도와 함께 식약처 고시 소시지류의 기준 및 규격을 만족 하여 합성 아질산염과 시판 수입품을 대체하는, 유효한 소 재가 될 수 있을 것으로 사료된다.
This study evaluated the feasibility of integrating the carbon storage of grasslands in Gangwon province into the InVEST carbon storage and sequestration model using large-scale digital land cover maps. Land cover maps from 1980, 1990, 2000, and 2010, obtained from the Environmental Geographic Information Service, were analyzed, with 28 maps examined for each year. Grassland carbon storage in Gangwon province was estimated through the InVEST software. The findings indicated that the grassland area showed an increase in 1990, followed by a declining trend, contrasting with the continuous reduction observed in actual managed grassland areas. Discrepancies between mapped and managed grassland areas were attributed to the classification criteria of the land cover maps, which included non-forage land uses such as golf courses, ski resorts, and green spaces, resulting in overestimations of grassland areas. To enhance accuracy, the adoption of land cover maps with refined grassland classification criteria is necessary. Accurate representation of grassland areas in land cover maps is critical for reliable estimation of grassland carbon storage using the InVEST software.
Time-series and spatial analysis of collected odor complaints in Seoul megacity during 2014~2021 were conducted for the characterization of odor complaints emitted from the living environment. The ratio of odor complaints in the environmental complaints was 16.7%, and odor complaints increased 3.3 times from 9,053 cases in 2014 to a maximum of 29,425 cases in 2019. In the time-based evaluation (monthly, daily (day of the week), and hourly variations), the highest number of complaints occurred in June, Monday, and 9:00 AM, respectively. While the lowest number of complaints occurred in December, Sunday, and 3:00 AM, respectively. Among 25 provinces in Seoul megacity, the odor complaints that occurred from 2014 to 2021 were concentrated in Eunpyeonggu. The odor complaints of Seodaemun-gu and Nowon-gu occurred at the highest levels in January-February and June, respectively. Based on the characteristics of odor complaint occurrence according to the above time-series and spatial analyses, more effective odor management and control can be implemented by focusing on those hotspot areas and specific time periods.
The objective of the present study was to investigate the effects of different red seaweeds on in vitro rumen fermentation characteristics and methane gas production. Five species of red seaweed (Chrysymenia wrughtii Yamada, CW; Hypnea sp., Hypnea sp.; Chondria crassicaulis, CC; Gelidium vagum Okamurae, GV; Hypnea saidana Holmes, HS) were obtained from National Institute of Fisheries Science (NIFS) in South Korea. The collected red seaweeds were washed for 3 minutes, and then samples were freeze-dried and ground to a size of a 1 millimeter. The buffered ruminal fluid (50 mL) was incubated with substrates and seaweeds (5% of substrates) at 39℃ for 48 hours. Total gas production was lower than red seaweed treatments excluding the CW treatment (p<0.05; 63.25 mL). Methane production was the lowest in CC treatment (p<0.05; 9.93 mL/g of digestible dry matter). The rumen pH of the red seaweed treatments ranged from 5.98 to 6.08, which was significantly the lowest in the GV treatment (p<0.05; 5.98). There was no significant difference in the total VFA concentration, but propionate (27.53%) was significantly highest in the CW treatment, whereas acetate (53.14%), iso-valerate (3.52%), valerate (1.72%), and A:P ratio (1.93) were significantly lowest (p<0.05). In conclusion, among the five species of red seaweeds, Chondria crassicaulis reduced in vitro methane production without negative effects on dry matter digestibility. Future studies will be needed to determine the optimal inclusion level of Chondria crassicaulis as feed additive to reduce enteric methane production.
Among the different types of seaweed that are cultivated in Korea for food, Capsosiphon fulvescensis the filamentous green alga with the highest production value. However, its harvest yield varies significantly from year to year due to its dependence on the natural seeding method. The present study aimed to identify the conditions affecting the formation of cyst-zygotes that can be utilized as artificial seeds during the life cycle of C. fulvescens. Gametangia and zygotes of C. fulvescens were found to be highly developed at temperatures above 15°C, with a maximum gametangial development rate of about 35% observed after 7 days of culture. The formation of zygotes into cystzygotes was induced within 7 days in all temperature conditions, but after 30 days of culturing, cyst-zygotes germinated into filamentous thalli at temperatures above 20°C, while the most stable formation and stabilization were observed at 15°C. Cystzygotes formed at 15°C showed high growth when they were transferred to 25°C conditions, and zoospores matured inside the cells. The production of cyst-zygotes was mostly influenced by temperature, and a gradual increase in temperature was found to be necessary for the formation and growth of cyst-zygotes. The culture conditions facilitating the formation of cyst-zygotes reported in this study can be useful for the production of artificial seeds and breeding technology for the effective cultivation of seaweed.
본 연구는 한국의 개발모형과 국가적 ‘매력’이 의도한 효과성을 달성하 는 데 필요한 조건을 북한의 지역개발 가능성을 중심으로 설명한다. 한 국이 공적개발원조 수혜국에서 공여국으로 전환되면서 영향력이 커지고 있으나, 동시에 점차 확대되고 있는 재정적 지원과 지식원조의 효과성에 관한 우려도 증대되고 있다. 남·북 관계에 관한 담론에서도 개방 후 북한 의 개발과 성장에 대해 개발협력 방식을 통한 한국식 모형 전수를 당연 시하는 논의들이 존재하지만, 잠재적 개발협력 파트너이자 수혜국인 북 한의 관점에서 한국식 모형이 우선순위 및 선호에 부합하고, 매력적일 것인지는 불투명하다. 본 연구는 한국에서 개발도상국으로의 일(一) 방향 의 원조는 국제개발협력 증진과 효과성에 크게 영향을 줄 수 있으며, 오 히려 북한과 같은 개발도상국에서 인식하는 한국의 ‘매력’ 및 선호와 한 국의 정부와 비영리단체가 제공할 수 있는 정책수단과 맞물려야 좋은 성 과를 보일 수 있다는 점을 주장한다. 이를 위해 최근 지속 가능한 개발 목표(SDGs)와 지방의 발전문제에 관심을 보인 북한에 대한 지역개발 논 의를 중심으로 국제개발 효과성 증진을 위한 방향을 제시한다.
Considering the negative impact of IUU fishing on fishery resources and fishery management, a revised approach for estimating risks of the ecosystem-based fisheries assessment (EBFA) of Zhang et al. (2011) was developed that incorporates three components of the IUU (illegal, unreported and unregulated) fishing as penalties. In this study, we introduced ways to develop indicators of IUU fishing suitable for the Korean fishery and apply them to ecosystem-based resource assessment. The indicator for the illegal fishing component was set as the fishing without licenses or permits, and that for the unreported fishing component was set as unreported fishing activities. Indicators for the unregulated fishing component were set as fishing operated by illegal fishing gear, illegal fish capture, fishing operations in prohibited fishing area, and fishing with restrict permits. IUU fishing significantly impacts the stock of target species. Therefore, in this study, the influence of IUU fishing is included in the Species Risk Index (SRI) at the species level, and weights are assigned based on the ratio of the stock, as ․ . The revised ecosystem-based fisheries assessment method, which considers the impact of IUU fishing, was applied to major fisheries on the south coast of Korea. It is necessary to reduce the non-reporting rate through the expansion of the TAC system and improve the accuracy of statistical compilation. To this end, the electronic fishing reporting system, which is being implemented on all vessels in Korean distant water fishing vessels, should be introduced to the coastal and offshore fisheries as well.
강원도 북부의 남북 접경지 3개소(서부-철원, 영서-양구, 영동-고성)에서 2023년 5월 11일부터 10월 12일까지 주요 천공성 해충 분류군인 나무좀아과를 대상으로 시기별 발생 양상 및 4가지 유인제(Ipsenol, Ipsedienol, Alpha-pinene, Monochamol)별 유인되는 종과 개체수를 조사 하였다. 연구결과, 총 26속 45종 7,743개체를 확인하였다. 확인한 종 중, 15종이 모든 조사지역에서 공통적으로 발생하고, 2종(암브로시아나무 좀, 왕녹나무좀)이 모든 조사지에서의 우점종으로 확인되었으며, 4종(오리나무좀, 붉은목나무좀, 여름나무좀, 암브로시아나무좀)이 조사기간(5 월~10월) 중 지속적으로 발생하는 것으로 확인되었다. 지역적으로는 가장 다양한 식물종들로 혼합림을 구성하고 있는 양구지역에서 총 36종 2,840개체가 확인되어 다른 두 조사지에서보다 다양하고 많은 개체가 확인되었다. 각 조사지에서 유인제별 확인한 종수는 유의미한 차이를 보이 지 않았으며 개체수면에서 철원에서는 Monochamol, 양구에서는 Ipsedienol, 고성에서는 Ipsenol 유인제에서 가장 많은 개체가 확인되었다.
The feathery branched green alga Bryopsis plumosa (Hudson) C. Agardh bloomed at Songji Beach, Haenam, Korea, in November 2022. A terrible stench was present on the beach, and the bottom was covered in a thick green mat of green algae. The alga was identified as B. plumosa, which is an opportunistic species currently distributed worldwide. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) were analyzed in the bloomed area and compared with those of other vicinities. The DIN and DIP concentrations were 1.067 and 0.461 mg L-1, respectively, which were 6 to 19 times higher than the average concentrations on southwest coasts, including Haenam. The B. plumosa bloom at Songji Beach in November 2022 appears to have depended on DIN and DIP concentrations in seawater. In this study, we report on the mass occurrence of B. plumosa, which appeared for the first time in Korea. This occurrence was found to be closely related to the concentration of nutrients in seawater. Therefore, it is necessary to manage the concentration of nutrients on land flowing into coastal waters to control green algal blooms such as Bryopsis.
This study aimed to examine the morphological characteristics and variation in main traits by comparing the growth of individuals of Ecklonia cava Kjellman (Laminariales, Phaeophyceae) under an aquaculture environment. This survey was conducted from April 2018 to November 2019 at the aquafarm in Jindo-gun, Jeollanam-do (South coast of Korea). To classify the morphology of individuals in the aquaculture farm of E. cava, we investigated fourteen morphological characteristics and calculated four ratios between the measured values. Juvenile individuals showed a simple or oblong lanceolate, and at 3-4 months, a short stipe and holdfast developed, along with a bladelet that developed into the secondary blade form. At 5-7 months, secondary blades were found to develop irregularly on the primary blade. At 8-10 months, the primary blade expanded and secondary blades elongated. At 11-12 months, the secondary blades became oblong. At 13-14 months, the thallus area expanded. At 15-16 months, tertiary blades were formed, the thallus became more complex, the stipe thickened, and the holdfast widened. At 17-18 months, secondary blades clearly developed along with lobes. At 19-20 months, tertiary blades developed and became similar to mature natural blades. In the principal component analysis (PCA), the monthly population of the first year (Q1) and that of the second year (Q2) of the cultured population were divided along PC1, which is related to secondary blade morphological characteristics and the holdfast width. Q2 and natural populations are distributed in descending order of volume in Jeju (J), East Coast (E), and South Coast (S) along PC2, which is related to primary blade and stipe morphological characteristics. The results of this study were judged to offer important criteria for the development of different varieties of E. cava.
In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04 Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 °C. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 °C (one-step 1,100 °C specimen). However, for one-step 1,115 °C specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 °C specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 °C specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and twostep specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 °C specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.
In order to present a predictive drift model, Jeju National University's training ship was tested for about 11 hours and 40 minutes, and 81 samples that selected one of the entire samples at ten-minute intervals were subjected to regression analysis after verifying outliers and influence points. In the outlier and influence point analysis, although there is a part where the wind direction exceeds 1 in the DFBETAS (difference in Betas) value, the CV (cumulative variable) value is 6%, close to 1. Therefore, it was judged that there would be no problem in conducting multiple regression analyses on samples. The standard regression coefficient showed how much current and wind affect the dependent variable. It showed that current speed and direction were the most important variables for drift speed and direction, with values of 47.1% and 58.1%, respectively. The analysis showed that the statistical values indicated the fit of the model at the significance level of 0.05 for multiple regression analysis. The multiple correlation coefficients indicating the degree of influence on the dependent variable were 83.2% and 89.0%, respectively. The determination of coefficients were 69.3% and 79.3%, and the adjusted determination of coefficients were 67.6% and 78.3%, respectively. In this study, a more quantitative prediction model will be presented because it is performed after identifying outliers and influence points of sample data before multiple regression analysis. Therefore, many studies will be active in the future by combining them.
Piezoelectric technology, which converts mechanical energy into electrical energy, has recently attracted drawn considerable attention in the industry. Among the many kinds of piezoelectric materials, BaTiO3 nanotube arrays, which have outstanding uniformity and anisotropic orientation compared to nanowire-based arrays, can be fabricated using a simple synthesis process. In this study, we developed a flexible piezoelectric energy harvester (f-PEH) based on a composite film with PVDF-coated BaTiO3 nanotube arrays through sequential anodization and hydrothermal synthesis processes. The f-PEH fabricated using the piezoelectric composite film exhibited excellent piezoelectric performance and high flexibility compared to the previously reported BaTiO3 nanotube array-based energy harvester. These results demonstrate the possibility for widely application with high performance by our advanced f-PEH technique based on BaTiO3 nanotube arrays.