검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 766

        201.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ethylene glycol-based Cu nanofluids were prepared by pulsed wire evaporation (PWE) method. The structural properties of Cu nanoparticles were studied by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The average diameter and Brunauer Emmett Teller (BET) surface area of Cu nanoparticles were about 100 nm and , respectively. The thermal conductivity and viscosity of copper nanofluid were measured as functions of Cu concentration and temperature. As the volume fraction of Cu nanoparticles increased, both the enhanced ratios of thermal conductivity and viscosity of Cu nanofluids increased. As the temperature increased, the enhanced ratio of thermal conductivity increased, but that ratio of viscosity decreased.
        4,000원
        202.
        2010.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As an alternative to the W plug used in MOSFETs, a Cu plug with a NiSi contact using Ta / TaN as a diffusion barrier is currently being considered. Conventionally, Ni was first deposited and then NiSi was formed, followed by the barrier and Cu deposition. In this study, Ti was employed as a barrier material and simultaneous formation of the NiSi contact and Cu plug / Ti barrier was attempted. Cu(100 nm) / Ti / Ni(20 nm) with varying Ti thicknesses were deposited on a Si substrate and annealed at 4000˚C for 30 min. For comparison, Cu/Ti/NiSi thin films were also formed by the conventional method. Optical Microscopy (OM), Scanning Probe Microscopy (SPM), X-Ray Diffractometry (XRD), and Auger Electron Microscopy (AES) analysis were performed to characterize the inter-diffusion properties. For a Ti interlayer thicker than 50 nm, the NiSi formation was incomplete, although Cu diffusion was inhibited by the Ti barrier. For a Ti thickness of 20 nm and less, an almost stoichiometric NiSi contact along with the Cu plug and Ti barrier layers was formed. The results were comparable to that formed by the conventional method and showed that this alternative process has potential as a formation process for the Cu plug/Ti barrier/NiSi contact system.
        4,000원
        203.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.
        4,000원
        204.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study was conducted to determine the effects of the cattle manure (CM) application on the botanical composition and micro-mineral contents (Fe, Mn, Cu, Zn) of grazing pasture at the experimental field of Livestock Division, Subtropical Animal Experiment Station, National Institute of Animal Science from year 2003 to 2005. The experiment was arranged in a randomized complete block design with three replications. The treatment consisted of T1: 100% chemical fertilizer (CF 100%), T2: 50% CF +50% CM, T3: 25% CF +75% CM, T4: 100% cattle manure (CM 100%), T5: 100% CM (1st yr.)+ 100% CF (2nd yr.) + 100% CM (3rd yr.), T6: 100% CM (1st yr.)+ 100% CF (2nd yr.)+ 100% CF (3rd yr.). The botanical composition of grassland for grass, legumes, and weeds showed that the rate of legumes was increased in all treatments. The weeds rate in T4 was the highest in comparison to the other treatments. For micro-mineral contents T5 showed the highest average Fe contents of 262.08 ppm and T1 showed the lowest (199.20 ppm). Mn contents was the highest in T1 among the other treatments. Zn contents was the highest in T3 as compared with other treatments. Cu contents was the highest in T6 as compared with other treatments. The results of this experiments indicated that micro-mineral contents of change was effect of legumes increased than treatment
        4,000원
        205.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Sn doped In2O3 (ITO) and ITO/Cu/ITO (ICI) multilayer films were prepared on glass substrates with a reactive radiofrequency (RF) magnetron sputter without intentional substrate heating, and then the influence of the Cu interlayer on themethanol gas sensitivity of the ICI films were considered. Although both ITO and ICI film sensors had the same thicknessof 100nm, the ICI sensors had a sandwich structure of ITO 50nm/Cu 5nm/ITO 45nm. The ICI films showed a ten timeshigher carrier density than that of the pure ITO films. However, the Cu interlayer may also have caused the decrement of carriermobility because the interfaces between the ITO and Cu interlayer acted as a barrier to carrier movement. Although the ICIfilms had two times a lower mobility than that of the pure ITO films, the ICI films had a higher conductivity of 3.6·10-4Ωcmdue to a higher carrier density. The changes in the sensitivity of the film sensors caused by methanol gas ranging from 50 to500ppm were measured at room temperature. The ICI sensors showed a higher gas sensitivity than that of the ITO single layersensors. Finally, it can be concluded that the ICI film sensors have the potential to be used as improved methanol gas sensors.
        3,000원
        206.
        2010.05 구독 인증기관·개인회원 무료
        A MnSOD gene was cloned from the fall webworm, H. cunea. The MnSOD cDNAs encode precursor proteins of 215 amino acid residues. The deduced amino acid sequences of the H. cunea MnSOD cDNA showed 76% identity to B. mori MnSOD and 62-56% to MnSOD sequences from other organisms. MnSOD and Cu/ZnSOD in H. cunea is expressed from all tissues. MnSOD expression is changed at a trace level in infected larvae, while Cu/ZnSOD expression is strongly changed against bacteria, and fungi. The expression level of Cu/ZnSOD increased by different artificial photoperiod (24L:0D), UV irradiation (312nm), and starvation condition, while the expression level of MnSOD only increased by starvation condition. Also, expression of MnSOD and Cu/ZnSOD showed no significant change in 0L:24D condition. In addition to expression levels of Cu/ZnSOD in H. cunea significantly increased by temperature stress and injection with paraquat, but reduced by injection with 10% H2O2. The expression level of MnSOD significantly increased by temperature stress and reduced by injection with 10% H2O2 and paraquat.
        207.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Scale generation in the inside of a pipe IS restricted by reduction and oxidation(REDOX) reaction of alloyed metal of Cu-Zn. To measure the scale generating rate in the 1.67 mm of inside diameter of stainless steel tube, 300 ppm of CaCO3 solution is circulated in the REDOX reactor and stainless steel tube in the order. In the case of CaCO3 solution treated by REDOX reactor, flowing is maintained without plugging in the stainless steel tube, and the concentration of Cu and Zn in the circulating solution showed less than 1 ppm, which is equal to that of untreated by REDOX reactor. The crystal type of CaCO3 generated by crystalline nucleus of Cu or Zn, mostly showed aragonite type.
        4,000원
        208.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The recirculating electrochemical flow reactor developed at UCLA has been employed to fabricate nanostructured GMR multilayers. For comparison, Ni/Cu multilayers have been electrodeposited from a single bath, from dual baths and from the recirculating electrochemical flow reactor. For a magnetic field of 1.5 kOe, higher GMR (Max. -5%) Ni/Cu multilayers with low electrical resistivity (< 10 μΩ·cm) were achieved by the electrochemical flow reactor system than by the dual bath (Max. GMR = -4.2% and< 20 μΩ·cm) or the single bath (Max. GMR = -2.1% and< 90 μΩ·cm) techniques. Higher GMR effects have been obtained by producing smoother, contiguous layers at lower current densities and by the elimination of oxide film formation by conducting deposition under an inert gas environment. Our preliminary GMR measurements of Ni/Cu multilayers from the electrochemical flow reactor obtained at low magnetic field of 0.15 T, which may approach or exceed the highest reported results (-7% GMR) at magnetic fields > 5 kOe.
        4,000원
        209.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Benzotriazole (B.T.A) which has been mainly used for the stabilization processing method of excavated copper and bronze artifacts is vaporized within 2~3 years after the usage because it is unstable at the acid conditions and cannot protect the surface of artifacts. In this study, NaOH method which has been used for the steel artifacts was applied as a stabilization process for the method of copper and bronze artifacts to gush chlorine ion out. For the reproduction of excavated samples, copper and bronze plates were dipped in 0.1M HCl for 26 hrs to form CuCl, rusted at 70˚C with RH 75% for the formation of corrosion products, and desalted in 0.1 M NaOH solution. The concentration of chlorine ion was measured by using ionchromatography. During the desalting process, a large quantity of chlorine ions was gushed out in early period and corrosion products were not additionally generated through the re-corrosion experiment. This NaOH desalting process was found to be a method of stabilization process for copper and bronze artifacts from the formation of Tenorite (CuO) during desalting as a protection layer for corrosion.
        4,000원
        210.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm Mg3P2 precipitation phase was observed having lattice parameter a:12.01Å such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.
        4,000원
        211.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study looked at high performance copper-based alloys as LED lead frame materials with higher electrical-conductivity and the maintenance of superior tensile strength. This study investigated the effects on the tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases when Cr was added in Cu-Fe alloy in order to satisfy characteristics for LED Lead Frame material. Strips of the alloys were produced by casting and then properly treated to achieve a thickness of 0.25 mm by hot-rolling, scalping, and cold-rolling; mechanical properties such as tensile strength, hardness and electrical-conductivity were determined and compared. To determine precipitates in alloy that affect hardness and electrical-conductivity, electron microscope testing was also performed. Cr showed the effect of precipitation hardened with a Cr3Si precipitation phase. As a result of this experiment, appropriate aging temperature and time have been determined and we have developed a copper-based alloy with high tensile strength and electrical-conductivity. This alloy has the possibility for use as a substitution material for the LED Lead Frame of Cu alloy.
        4,000원
        212.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrocatalytic characteristics of oxygen reduction reaction of the PtxM(1-x) (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The PtxM(1-x)/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the PtxM(1-x) particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and PtxM(1-x)/MWNTs catalysts are seen as FCC, and synthesized PtxM(1-x) crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, Pt0.77Co0.23/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or PtxM(1-x)/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and PtxM(1-x) (M = Co, Cu, Ni) catalysts, the Pt0.77Co0.23/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.
        4,000원
        213.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.
        4,000원
        214.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The amorphization process and the thermal properties of amorphous TiCuNiAl powder during milling by mechanical alloying were examined by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The chemical composition of the samples was examined by an energy dispersive X-ray spectrometry (EDX) facility attached to the scanning electron microscope (SEM). The as-milled powders showed a broad peak (2 = 42.4) with crystalline size of about 5.0 nm in the XRD patterns. The entire milling process could be divided into three different stages: agglomeration (0 < t 3 h), disintegration (3 h < t 20 h), and homogenization (20 h < t 40 h) (t: milling time). In the DSC experiment, the peak temperature T and crystallization temperature T were 466.9 and 444.3, respectively, and the values of T, and T increased with a heating rate (HR). The activation energies of crystallization for the as-milled powder was 291.5 kJ/mol for T.
        4,000원
        215.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        TiCuNiAl quaternary amorphous alloy was prepared by high-energy ball milling process. A complete amorphization was confirmed for the composition of TiCuNiAl after milling for 30hrs. Differential scanning calorimetry showed a large super-cooled liquid region (T = T T, T and T: glass transition and crystallization onset temperatures, respectively) of 80 K. Prepared amorphous powders of TiCuNiAl were consolidated by spark-plasma sintering. Densification behavior and microstructure changes were investigated. Samples sintered at higher temperature of 713 K had a nearly full density. With increasing the sintering temperature, the compressive strength increased to fracture strength of 756 MPa in the case of sintering at 733 K, which showed a 'transparticle' fracture. The samples sintered at above 693 K showed the elongation maximum above 2%.
        4,000원
        216.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe based (FeCSiBPCrMoAl) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.
        4,000원
        217.
        2009.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fe based (FeCSiBPCrMoAl) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The experiment results show that the as-prepared Fe amorphous powders less than 90 m in size has a fully amorphous phase and its weight fraction was about 73.7%. The as-atomized amorphous Fe powders had a complete spherical shape with very clean surface. Differential scanning calorimetric results of the as-atomized Fe powders less than 90 m showed that the glass transition, T, onset crystallization, T, and super-cooled liquid range T=T-T were 512, 548 and 36, respectively. Fe amorphous powders were mixed and deformed well with 10 wt.% Cu by using AGO-2 high energy ball mill under 500 rpm.
        4,000원
        218.
        2009.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In high-efficiency Cu(In,Ga)Se2 solar cells, Na is doped into a Cu(In,Ga)Se2 light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)Se2 absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of 103Ω·cm indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.
        4,000원
        219.
        2009.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A Cu-Fe-P copper alloy was processed by accumulative roll-bonding (ARB) for ultra grain refinement and high strengthening. Two 1mm thick copper sheets, 30 mm wide and 300 mm long, were first degreased and wire-brushed for sound bonding. The sheets were then stacked on top of each other and roll-bonded by about 50% reduction rolling without lubrication at ambient temperature. The bonded sheet was then cut into two pieces of the same dimensions and the same procedure was repeated for the sheets up to eight cycles. Microstructural evolution of the copper alloy with the number of the ARB cycles was investigated by optical microscopy (OM), transmission electron microscopy(TEM), and electron back scatter diffraction(EBSD). The grain size decreased gradually with the number of ARB cycles, and was reduced to 290 nm after eight cycles. The boundaries above 60% of ultrafine grains formed exhibited high angle boundaries above 15 degrees. In addition, the average misorientation angle of ultrafine grains was 30 degrees.
        4,000원
        220.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electromagnetic wave absorption sheets were fabricated by mixing of nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz1 GHz.
        4,000원