검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 354

        241.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni nanowires were fabricated using anodic aluminum oxide (AAO) membrane as a template by electrochemical deposition. The nanowires were formed within the walls of AAO template with 200 nm in pore diameter. After researching proper voltage and temperature for electrochemical deposition, the length of Ni nanowires was controlled by deposition time and the supply of electrolyte. The morphology and microstructure of Ni nanowires were investigated by field emission scanning electron microscope (FE-SE), X-ray diffraction (XRD) and transmission electron microscope (TEM).
        4,000원
        242.
        2011.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A nano-porous structure of tin oxide was prepared using an anodic oxidation process and the sample's electrochemical properties were evaluated for application as an anode in a rechargeable lithium battery. Microscopic images of the as-anodized sample indicated that it has a nano-porous structure with an average pore size of several tens of nanometers and a pore wall size of about 10 nanometers; the structural/compositional analyses proved that it is amorphous stannous oxide (SnO). The powder form of the as-anodized specimen was satisfactorily lithiated and delithiated as the anode in a lithium battery. Furthermore, it showed high initial reversible capacity and superior rate performance when compared to previous fabrication attempts. Its excellent electrode performance is probably due to the effective alleviation of strain arising from a cycling-induced large volume change and the short diffusion length of lithium through the nano-structured sample. To further enhance the rate performance, the attempt was made to create porous tin oxide film on copper substrate by anodizing the electrodeposited tin. Nevertheless, the full anodization of tin film on a copper substrate led to the mechanical disintegration of the anodic tin oxide, due most likely to the vigorous gas evolution and the surface oxidation of copper substrate. The adhesion of anodic tin oxide to the substrate, together with the initial reversibility and cycling stability, needs to be further improved for its application to high-power electrode materials in lithium batteries.
        4,000원
        243.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, TiCl4·YCl3 solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical TiO2 precursor. Then, the Li4Ti5O12 was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical TiO2 precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which Li4Ti5O12 spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at 50˚C for 30 minutes and at 850˚C for 6 hours heat treatment time were optimized. Li4Ti5O12 was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.
        4,000원
        245.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrochemical properties of electric double layer capacitor(EDLC) was studied by controlling pore size distribution and specific surface area of the activated carbon fiber(ACF). The mesoporous ACF, which was prepared by the iron exchange method, showed the tendency of increasing average pore size and decreasing total surface area. The mesoporous ACF (surface area = 2225 m2/g, pore size=1.93 nm) showed increased mesopore(pore size=1~3nm) volume from 0.055 cc/g to 0.408 cc/g compared to its raw ACF. The charging capacity of the EDLC which uses the prepared mesoporous ACF also increased from 0.39 F/cm2 to 0.55 F/cm2. From these results, it can be known that the electrochemical properties of EDLC are mainly dependent on the specific surface area, but above the surface area 2200 m2/g, it is the mesopore volume that affects the performance of the capacitor considerably. Because the increased mesopore volume results in a decreased ion mobility resistance, the charge capacitance is enhanced.
        4,000원
        246.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Boron doped fullerene C60 (B:C60) films were prepared by the thermal evaporation of C60 powder using argon plasma treatment. The morphology and structural characteristics of the thin films were investigated by scanning electron microscope (SEM), Fourier transform infra-red spectroscopy (FTIR) and x-ray photo electron spectroscopy (XPS). The electrochemical application of the boron doped fullerene film as a coating layer for silicon anodes in lithium ion batteries was also investigated. Cyclic voltammetry (CV) measurements were applied to the B:C60 coated silicon electrodes at a scan rate of 0.05 mVs-1. The CV results show that the B:C60 coating layer act as a passivation layer with respect to the insertion and extraction of lithium ions into the silicon film electrode.
        3,000원
        247.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the electrochemical properties for Langmuir-Blodgett(LB) films mixed with l-bromotetradecane(Cl4), l-bromohexadecane(Cl6), and l-bromooctadecane(Cl8). The alkyl bromides mixture was deposited by using the Langmuir-Blodgett method on the ITO glass. The electrochemical properties measured by using cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) at various concentrations(0.5, 1.0, 1.5 and 2.0 N) of NaClO4 solution. A measuring range was reduced from initial potential to -1350 m V, continuously oxidized to 1650 mV. The scan rate was 100 mV/s. As a result, LB films of Cl4, Cl6, and Cl8 mixture monolayers appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of alkyl bromides amount.
        4,000원
        248.
        2010.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The recirculating electrochemical flow reactor developed at UCLA has been employed to fabricate nanostructured GMR multilayers. For comparison, Ni/Cu multilayers have been electrodeposited from a single bath, from dual baths and from the recirculating electrochemical flow reactor. For a magnetic field of 1.5 kOe, higher GMR (Max. -5%) Ni/Cu multilayers with low electrical resistivity (< 10 μΩ·cm) were achieved by the electrochemical flow reactor system than by the dual bath (Max. GMR = -4.2% and< 20 μΩ·cm) or the single bath (Max. GMR = -2.1% and< 90 μΩ·cm) techniques. Higher GMR effects have been obtained by producing smoother, contiguous layers at lower current densities and by the elimination of oxide film formation by conducting deposition under an inert gas environment. Our preliminary GMR measurements of Ni/Cu multilayers from the electrochemical flow reactor obtained at low magnetic field of 0.15 T, which may approach or exceed the highest reported results (-7% GMR) at magnetic fields > 5 kOe.
        4,000원
        249.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We carried out this experiment to observe an electrochemical properties for LB films of alkyl compounds by the cyclic voltammetry. Alkyl bromides was deposited by using the Langmuir- Blodgett method on the ITO glass. We measured to an electrochemical measurement by using cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) in 0.5, 1.0, 1.5 and 2.0 N NaClO4 solution. A measuring range was reduced from initial potential to -1350 mV, continuously oxidized to 1650 mV. The scan rate were 100 mV/s. As a result, an electrochemical properties of the LB films of alkyl bromides appeared irreversible process caused by only the oxidation current from the cyclic voltammogram. The diffusivity(D) effect of LB films decreased with increasing of alkyl compounds amount.
        4,000원
        250.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigated the electrochemical properties for Langmuir-Blodgett (LB) films of functionalized polyimide. LB films of polyimide monolayer were deposited by the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured by cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) at various concentrations(0.5, 1.0, and 1.5 N) of NaClO4 solution. The current of reduction and oxidation range was measured from 1650 mV to -1350 mV, continuously. The scan rates were 50, 100 and 150 mV/s, respectively. As a result, monolayer and multilayer LB films of polyimide are appeared on irreversible process caused by the oxidation current from the cyclic voltammogram.
        4,000원
        251.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Electrochemical deposition characteristics of CdSe nanorods were investigated for hybrid solar cell applications. CdSe nanorods were fabricated by electrochemical method in CdSO4 and H2SeO3 dissolved aqueous solution using an anodic aluminum oxide (AAO) template. Uniformity of CdSe nanorods was dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtain a 1:1 atomic composition of CdSe. CdSe nanorods deposited by direct-current method showed better uniformity compared to those deposited by purse-current and/or purse-reverse current methods due to the bottom-up filling characteristics. H2SeO3 concentration showed more significant effects on pH of solution and stoichiometry of deposits compared to that of CdSO4. A 1:1 stoichiometry of uniform CdSe nanorods was obtained from 0.25M CdSO4-5 mM H2SeO3 electrolytes with a direct current of 10 mA/cm2 at room temperature. X-ray diffraction and electron diffraction pattern investigations demonstrate that CdSe nanorods are a uniform cubic CdSe crystal.
        4,000원
        252.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m2/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm2.
        4,000원
        253.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The compound of 2,6-Bis[(9-phenylcarbazolyl)ethenyl]naphthalene (BPCEN-1), 2-[6-1-Cyano-2-(9-phenylcarbazoly)vinylnaphthyl]-3-(9-phenylcarbazolyl)acrylonitrile (BPCEN-2), 2,6-Bis[4-(1-naphthy l)phenylamino styrenyl] naphthalene (BNPASN-1), 2-[6-1-Cyano-2-(naphthylphenylaminophenyl) vinylnaphthyl]-3-(naphthylphenylaminophenyl)acrylonitrile (BNPASN-2) was analyzed electrochemically and spectroscopically and can be obtained by bonding phenylcarbazolyl, naphthylphenylaminophenyl and -CN ligands to 2,7-naphthalene. The electrochemical and spectroscopic study resulted in the P-type (BPCEN-1, BNPASN-1) being changed to N-type (BPCEN-2, BNPASN-2) according to -CN bonding despite having the same structure. The value of band gap(Eg) was revealed to be small as HOMO had shifted higher and LUMO lower. The Eg value for naphthylphenylaminophenyl ligand was reduced because it has a smaller HOMO/LUMO value than that of phenylcarbazolyl from a structural perspective. The electrochemical HOMO/LUMO values for BPCEN-1, BPCEN-2, BNPASN-1, BNPASN-2 were measured to be 5.55eV / 2.83eV, 5.73eV / 3.06eV, 5.48eV / 2.78eV, and 5.53eV / 2.98eV, respectively. By -CN ligand, the UV max, Eg and PL max were shifted to longer wavelength in their spectra and the luminescence band could be also confirmed to be broad in the photoluminescence (PL) spectrum.
        4,000원
        254.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The benzophenone derivatives(4-CH3O-4'-NO2 and 3,4'-di-NO2) are synthesized by the Fridel-Craft acylation and the nitration method. Electrochemical redox potentials of the benzophenone derivatives (4-CH3O, H, 3-Cl, 3-NO2, 4-NO2, 4-CH3O-4'-NO2, 3,4'-di-NO2) are measured by using cyclic voltammometry. In the relationship of summing Hammett value and redox potential, we find a proportional constant(σ) that shows a good relation with an electrochemical property and a reactivity of the benzophenone derivatives. The benzophenone substituted with the electron donating groups(4-OCH3 and 4-OCH3-4'-NO2) are higher the energy in the LUMO level, then increasing a band-gap energy(Eg), their Egs are obtained as a 3.94 eV and 3.59 eV, respectively.
        4,200원
        255.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the electrochemical non-enzyme immunosensor has been developed for the determination of salmonella antigen, using inverse voltammetry. For the estimation of salmonella antigen concentration, the nanoparticles synthesized by microemulsion method were conjugated with salmonella antigen. Then, the immunocomplex between antibody immobilized on the transducer surface and antigen containing a magnetic nanoparticles was formed. From the linear relationship between the reduction peak current of Fe(III) and salmonella antigen concentration, it is suggested that the electrochemical non-enzyme biosensor is applicable to detect salmonella antigen in the concentration range of
        4,000원
        258.
        2009.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium(Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as afunction of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution.The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast withCu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu andTi increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu andTi. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, theeffect of Triton X-100®, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics ofthe specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. Incontrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-100®changes its micelle structure according to its concentration in the solution, the corrosion rate of eachconcentration was tested.
        4,000원
        259.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the dependence of the various sputtering conditions (Ar pressure: 2~10 mTorr, Power: 50~150 W) and thickness (50~1200 nm) of Si thin film on the electrochemical properties, microstructural properties and the capacity fading of a Si thin film anode. A Si layer and a Ti buffer layer were deposited on Copper foil by RF-magnetron sputtering. At 10 mTorr, the 50 W sample showed the best capacity of 3323 mAh/g, while the 100 W sample showed the best capacity retention of 91.7%, also at 10 mTorr. The initial capacities and capacity retention in the samples apart from the 50W sample at 10 mTorr were enhanced as the Ar pressure and power increased. This was considered to be related to the change of the microstructure and the surface morphology by various sputtering conditions. In addition, thinner Si film anodes showed better cycling performance. This phenomenon is caused by the structural stress and peeling off of the Si layer by the high volume change of Si during the charge/discharge process.
        4,000원
        260.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The commercial activated carbons are typically prepared by activation from coconut shell char or coal char containing lots of inorganic impurities. They also have pore structure and pore size distribution depending on nanostructure of precursor materials. In this study, two types of commercial activated carbons were applied for EDLC electrode by removing impurities with acid treatments, and controlling pore size distribution and contents of functional group with heat treatment. The effect of the surface functional groups on electrochemical performance of the activated carbon electrodes was investigated. The initial gravimetric and volumetric capacitance of coconut based activated carbon electrode which was acid treated by HNO3 and then heat treated at 800℃ were 90 F/g and 42 F/cc respectively showing 94% of charge-discharge efficiency. Such a good electrochemical performance can be possibly applied to the medium capacitance of EDLC.
        4,000원