검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 154

        21.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we analyzed the nutritional composition properties of soybeans and the organic acids, amino acids and volatile flavor compounds of fermented soybean products. We used five soybean cultivars including Pyeongwon, Jinpung, Saedanbaek, Saeolkong and Cheonga for this experiment. Physicochemical analysis of soybeans, showed that the cured protein and fat contents were 35.12∼45.12 and 14.26∼20.14%, respectively. The rank order of major organic acids was lactic acid > acetic acid > fumaric acid, with Saedanbaek being the highest. Total amino acid content of the samples was 358.12∼657.28 mg/100 g, and glutamic acid, alanine, cysteine, valine, leucine, histidine and arginine were the major amino acids. We identified a total of 34 volatile aroma-compounds, including 7 alcohols, 7 acids, 7 ketones, 5 phenols, 2 esters, 1 furan, 4 pyrazines, and 1 miscellaneous compounds. As a result of this, could be applied to determine the suitability of cultivars and the quality for the process of the fermented soybean products.
        4,000원
        22.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 스파티필름의 수분 스트레스 정도에 따라 실내 공간 내 오염물질 제거 효율을 구명하고자 수행하였다. 식물이 없는 공간을 대조구, 정상적인 스파티필름과 수분 스트레스를 받은 스파티필름을 각각의 처리구로 하였다. 스파티필름의 수분 스트레스 유무에 따른 chamber 내 온도를 조사한 결과 대조구와 처리구 모두 식물의 생육 적정 범위인 23±1℃를 유지하였으며, 처리 간의 0.7℃의 차이를 보였다. 습도의 경우 대조구와 처리구는 유의차 있게 나타났으며, 처리 간의 유의 차는 없는 것으로 나타났다. 수분 스트레스에 따른 실내 오염 물질을 조사한 결과, 포름알데히드(Formaldehyde) 경우 대조구는 0.30mg・m-3, 정상적인 스파티필름은 0.05mg・m-3 , 수분 스트레스를 받은 스파티필름은 0.09mg・m-3으로 대조구와 처리구는 통계적으로 유의차를 보였으며, 식물 내 수분 스트레스에 따른 처리구간에는 유의차가 없었다. TVOC(Total Volatile Organic Compound)조사 결과, 정상적인 스파티필름의 TVOC는 5시간 후 0.00mg・m-3 으로 모두 제거 된 반면, 수분 스트레스를 받은 스파티필름은 0.34mg・m-3으로 다소 남아 있었으며, 대조구는 1.25mg・m-3으로 세 처리 모두 통계적으로 유의차 있게 나타났다. 또한 이산화탄소 변화량 조사결과, 대조구는 459ppm, 정상 스파티필름은 446ppm으로 통계적으로 유의한 차이는 없으며, 수분 스트레스를 받은 스파티 필름이 대조구보다 이산화탄소 함량이 다소 높았다. 기공변화율 조사 결과, 정상 스파티필름의 변화율은 높게 나타났으며, 수분 스트레스를 받은 스파티필름은 변화율이 낮은 것으로 조사되었다. 따라서, 스파티필름이 배치되어있지 않은 공간보다 배치된 공간이 공기정화에 효과적이며, 수분 스트레스를 받은 스파티필름은 실내오염물질 제거에 있어서 기공 변화율 및 이산화탄소 흡수능력이 저하되므로 스파티필름을 이용하여 효과적으로 실내오염물질을 제거하기 위해서는 적절한 수분 관리가 필요한 것으로 판단된다.
        4,000원
        23.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we listed the VOCs focusing on ozone precursors emitted from printing shops in urban areas. The emission characteristics of the VOCs from workplaces were evaluated in terms of the used inks. As a result of field measurements, more than 80% of detected VOCs showed high values of photochemical ozone creation potential (POCP). The main species were aromatic hydrocarbons such as ethylbenzene, toluene, ethyltoluene, xylene, trimethylbenzene and their isomers, and paraffin hydrocarbons such as nonane, decane, and octane. Comparative examination between pristine ink and the printing process revealed the emission of hydrocarbons with 8 to 12 carbons such as o-xylene to n-dodecane from the used inks and with 3 to 7 carbons such as acetone to 3-methylhexane from the printing process. The major contributors to ozone production in printing industries were toluene (12.2%), heptane (7.43%), and 1,2,3-trimethylbenzene (7.21%) in every step.
        4,200원
        26.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we measured the concentration of total volatile organic compounds (TVOCs) in four different seasons from 2016 to 2017 in order to determine seasonal variation of indoor air quality in relation to public transportation modes (subways, trains, and express buses). The measurement was carried out both during rush hour when traffic was congested as well as during non-rush hour when traffic was not congested. Effects by season, degree of congestion, and characteristics of public transportation were analyzed on the basis of 295 items of data during the periods of congestion and 295 items of data during the periods of non-congestion. The average TVOCs concentration in winter was the highest with 226.4 μg/m 3 . The average TVOCs concentration on an express bus was the highest with a seasonal average of 142.3 μg/m 3 . The TVOCs concentration in the period of congested traffic was higher than in the period of non-congested traffic for all public transportation modes. For the average TVOCs concentration by season and transportation, there was no data that exceeded the guidelines regarding maintaining indoor air quality. However, 2.5% of all sample measured data (TVOCs) exceeded the guidelines regarding maintaining indoor air quality. Therefore, the continuous monitoring of public transport vehicles is required.
        4,000원
        27.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to determine the absorption properties of silicone oil, liquid paraffin, and silicone rubber as absorbents for hydrophobic volatile organic compounds (VOCs) mainly emitted from the printing and publishing industry through VOCs absorption efficiency and partition coefficient. Also, changes in absorbability were tested through blending of absorbents and load of target VOCs mixtures. The results obtained can be used as fundamental data to choose an appropriate absorbent. All of the three absorbents showed an excellent absorption efficiency of above 98% for each 5 wt% load of the target VOCs including toluene, xylene, methyl ethyl ketone (MEK), isopropyl alcohol (IPA), 1,2,4-trimethylbenzene (124-TMB), and n-Nonane. In terms of toluene load, all absorbents showed good absorption efficiency of above 95% to a high load of 15 wt%. The air-absorbent partition coefficient of each target compound (P value) exhibited the highest value of 9.8 × 10−5 for 124-TMB in silicone rubber and the lowest value of 1.6 × 10−2 for IPA in liquid paraffin. These results indicate that the target VOCs had high affinity for the three absorbents. Absorption efficiency for the target VOCs at various absorbent blending ratios using three kinds of absorbents was improved to 99.9% regardless of the absorbent type or blending ratio. This result suggests that the shortcomings of single absorbents can be overcome through absorbent blending, enabling cost reduction and applicability to a dry-type treatment process. In treatment for mixture of the target VOCs to mimic an actual VOCs treatment, the absorption performances of silicone oil showed an absorption efficiency of 99% for 16 wt% of total VOCs load. These results indicated that silicone oil could be considered as a good absorbent.
        4,200원
        28.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A pilot-scale biocover was installed at a sanitary landfill for municipal waste, and the removal of volatile organic compounds (VOCs) by the biocover was evaluated for a long period of 550 days. The biocover (2.5 m W × 5 m L × 1 m H) was constructed with the mixture of soil, perlite, earthworm cast and compost (6:2:1:1, v/v). The total VOCs concentration of the inlet gas into the biocover was 820.3 ppb~7,217.9 ppb, and the total VOCs concentration of the outlet gas from the surface of the biocover was 12.6 ppb~1,270.1 ppb. The average removal efficiency of total VOCs was 87.6 ± 11.0% (60.5% for minimum and 98.5% for maximum). Toluene concentration was the highest among the inlet VOCs, followed by ethylbenzene, m, p-xylene and o-xylene. These aromatic VOCs accounted for more than 50% of the total VOCs concentration. Other than these aromatic VOCs, hexane, cyclohexane, heptane, benzene, and acetone were major VOCs among the inlet VOCs. Compared with the VOC profiles in the inlet gas, the relative contribution of dichloromethane to the outlet VOCs emitted from the biocover layer increased from 0.1% to 15.3%. The average removal efficiencies of BTEX in the biocover were over 84% during the operation period of 550 days. The average removal efficiencies of hexane, cyclohexane and heptane in the biocover were 86.0 ± 18.9%, 85.4 ± 20.4% and 97.1 ± 4.0%, respectively. The removal efficiency of VOCs in the biocover decreased not only when the ambient temperature had fallen below 5oC, but also when the ambient temperature had risen above 23oC. Information on the VOCs removal characteristics of the biocover installed in the landfill field can be useful for commercializing the biocover technology for the treatment of VOCs.
        4,900원
        29.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, IrO2/Ti, IrO2/Ti, and IrO2-Ru-Pd/Ti. EAOP was operated under same current density (25 mA/cm2) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the IrO2-Ru/Ti anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by IrO2-Ru/Ti, 90.2% by IrO2-Ru-Pd/Ti, 78% by IrO2/Ti, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the IrO2-Ru/Ti anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.
        4,200원
        30.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식품의 향기성분은 다른 주성분에 비해 미량으로 존재하지만, 풍미를 반영하는 중요한 지표로 색, 조직감과 더불어 식품의 품질을 평가하는 중요한 요소이다. 본 연구에는 SPME 추출방법을 이용하여 산고 품종 배주스의 휘발성 향기성분을 추출하여 GC-MS로 향기성분을 확인 및 동정하였다. 총 22종에 향기 화합물이 분리동정되었고, ester류 7종, aldehyde류 9종, ketone류 2종, alcohol류 1종, acid류 1종, furan류 1종 그리고 함황화합물 1종으로 구성되었다. 이 중에서 ethyl acetate, hexanal, ethyl hexanoate, ethyl 3-(methylthio)-2-propenoate, ethyl octanoate and 2-hexenal이 배주스의 주요 향기성분으로 간주되었다. 특히, ethyl acetate의 함량이 13.36~19.60 μg/kg으로 가장 높은 것으로 검출되어 전체 향기성분의 절반 이상을 차지하였다. 또한, 향기성분의 변화를 억제 및 추출능력 향상을 위해 분석용 시료에서 포화 염화칼슘 용액을 첨가하여 그 효과를 검증하였고, 착즙직후 바로 염용액으로 처리한 배주스에서 aldehyde류, acid류, furans류 및 s-compounds류은 유의적인 많은 것을 확인하였다. 본 연구결과는 배 원물의 품질저하 혹은 가공으로 발생한 향기 변화를 보완하는데 기초자료로 활용이 가능하며, 배주스를 활용한 가공식품의 향 품질을 향상시켜 고부가가치 가공식품을 개발하여 배의 소비 촉진에 기여할 수 있는 것으로 기대된다.
        4,000원
        31.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, volatile organic compounds (VOCs) emitted from printing industries were analyzed, and an inorganic adsorbent, γ-alumina, was selected for the effective control of the VOC emissions. Printing processes commonly require inks, thinners, and cleaners, and they were mixed organic solvents containing aromatic compounds, ketones, and alcohols. Therefore, toluene, methyl ethyl ketone (MEK), and isopropyl alcohol (IPA) were selected as model compounds for this study. The adsorptive properties using γ-alumina were determined for the model compounds. Both batch isotherm and continuous flow column tests demonstrated that the adsorption capacity of MEK and IPA was 3~4 times higher than that of toluene. The column test performed at an inlet toluene concentration of 100 ppm showed that an 80% breakthrough for toluene was observed after 3 hours, but both MEK and IPA were continuously adsorbed during the same time period. A numerical model simulated that the γ-alumina could remove toluene at a loading rate of 0.4 mg/min only for a 4-hour period, which might be too short of a duration for real applications. Consequently, lifetime enhancement for γ-alumina must be implemented, and ozone oxidation and regeneration would be feasible options.
        4,000원
        32.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Indoor Volatile organic compounds (VOCs) are classified as known or possible toxicants and odorants. This study characterized VOC levels in 11 homes in an area in the capital of Seoul by using two different methods of VOCs sampling, which are the active sampling using a thermal sorption tube and the passive sampling using a diffusion sampler. When using the active sampling method, the total target VOC concentration ranged from 41.7 to 420.7 μg/ m3 (mean 230.4 μg/m3; median 221.8 μg/m3) during winter and 21.3 to 1,431.9 μg/m3 (mean 340.1 μg/m3; median 175.4 μg/m3) during summer. When using the passive method, 29.6 to 257.5 μg/m3 (mean 81.8 μg/m3; median 49.4 μg/m3) during winter and 1.2 to 5,131.1 μg/m3 (mean 1,758.8 μg/m3; median 1,375.1 μg/m3) during summer. Forty-nine VOCs were quantified and toluene showed the highest concentration regardless of the season and the sampling method studied. The distribution of VOCs was relatively varied by using the active method. However, it showed a low correlation with indoor environmental factors such as room temperature, humidity and ventilation time. The correlation between indoor environmental factors and VOCs were relatively high in the passive method. In particular, these characteristics were confirmed by principal component analysis.
        4,000원
        33.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two sewage treatment facilities were selected to identify odor emission characteristics, focusing on volatile organic compounds (VOCs) and sulfur compounds. The complex odor, 5 kinds of sulfur compounds and 23 kinds of VOCs were analyzed from gas and sludge storages. Hydrogen sulfide was detected in the highest concentration and had the highest odor quotient among the odorous compounds monitored in this study, demonstrating that the contribution of hydrogen sulfide to the complex odor reached up to 90%. For VOCs, the overall contribution to the complex odor was not critical but VOCs can sufficiently trigger an odorous sensation because the sum of the odor quotient reached up to 2.89.
        4,000원
        34.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is a review on the treatment of volatile organic compounds using absorbents. Volatile organic compounds (VOCs) are carbon-based compounds with a boiling point ranging from 50℃ to 250℃. VOCs have been considered as contributors of photochemical smog and global warming as well as hazards to human health. VOCs can be removed by a variety of methods, including those that are destructive (incineration, catalytic oxidation, and biodegradation) and non-destructive (adsorption, absorption, and condensation). The removal performance of VOCs in the gas phase is influenced by gas-liquid mass transfer and/or the microbial activity depending on VOC properties such as solubility, diffusivity, bioavailability, and toxicity. Since the usual processes for VOCs removal involve water as a VOC absorbent, it is necessary to improve the removal efficiency of hydrophobic VOCs. In addition, VOC removal processes do not appear to show consistently satisfactory performance due to transient high-strength VOC loading in practical fields. To increase the gas-liquid mass transfer of hydrophobic VOCs and to prevent the functional deterioration due to transient high loading, the use of nonaqueous phase VOC absorbents is a promising strategy. This review offers a critical overview of the types, properties, and the applications of the VOC absorbents, including liquid organic solvents, ionic liquids, and solid polymers. This paper also details the advantages by employing the VOC absorbents for the removal of hydrophobic VOCs in the integrated process, absorption and biodegradation coupling process. The challenges of and future perspectives on the development of efficient VOC removal processes using VOC absorbents are briefly discussed.
        6,600원
        38.
        2017.11 구독 인증기관·개인회원 무료
        In South Korea, increase in kimchi import from China has emphasized the importance of noticing the origin of production area, largely because of the price and safety concerns. Nevertheless, identification of it depends on a complex physicochemical method. Hence, the objective of this study is to develop a statistical algorithm applicable for analyzing volatile compounds measured by electronic nose so that the device can be used for simple classification of kimchi by its production origin. Discriminant function analysis (DFA), one of multi-variate analysis, was mainly used for analyzing big-size data of volatile compounds detected from kimchi produced either in South Korea or China. Result showed that DFA could completely separate 69 varieties of kimchi by its origin of production (39 from South Korea and 30 from China). This result suggests that volatile compounds can be an index for identifying origin of kimchi and consequently, electronic nose is an optimal option for identifying origin of kimchi production when combined with multi-variate statistics.
        40.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to examine indoor fungal concentration and fungal volatile organic compounds(VOCs) in single-person households. A total of 22 houses occupied by one person were investigated in this study. 19 VOCs detected in the field were estimated as fungi-derived VOCs through a review of the literature, and 11 VOCs were confirmed as fungal VOCs by laboratory experiments. Exposure to fungal VOCs in the indoor environment has been confirmed to be highly influenced by airborne fungal concentration and indoor humidity. 3-octanone was characterized by a clear generation profile in Aspergilus versiocolor, and n-decane in Pencillum chrysogenum. ntetradecane emitted by Stachybotrys chartarum exhibited a tendency to occur consistently. The observations made in this study demonstrated that single-person households can easily be exposed to fungi, and MVOCs can be used as an indicator of fungal exposure in indoor environments.
        4,000원
        1 2 3 4 5