검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        21.
        2012.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.
        4,000원
        22.
        2011.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from 0.1kg/cm2 to 3kg/cm2, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from 0.1kg/cm2 to 1kg/cm2, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to 3kg/cm2, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at 0.1kg/cm2, the average particle size is approximately 100 nm; when the air pressure increases up to 0.5kg/m2, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to 1kg/cm2, the surface structure is almost the same as in the case of 0.5kg/cm2, and the average particle size is around 80- 100 nm; when the air pressure increases up to 3kg/cm2, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from 0.1kg/cm2 to 0.5kg/cm2, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to 1kg/cm2 and 3kg/cm2, the XRD peak intensity increases, while the specific surface area also increases.
        4,000원
        23.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.
        4,000원
        24.
        2011.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A nano-porous structure of tin oxide was prepared using an anodic oxidation process and the sample's electrochemical properties were evaluated for application as an anode in a rechargeable lithium battery. Microscopic images of the as-anodized sample indicated that it has a nano-porous structure with an average pore size of several tens of nanometers and a pore wall size of about 10 nanometers; the structural/compositional analyses proved that it is amorphous stannous oxide (SnO). The powder form of the as-anodized specimen was satisfactorily lithiated and delithiated as the anode in a lithium battery. Furthermore, it showed high initial reversible capacity and superior rate performance when compared to previous fabrication attempts. Its excellent electrode performance is probably due to the effective alleviation of strain arising from a cycling-induced large volume change and the short diffusion length of lithium through the nano-structured sample. To further enhance the rate performance, the attempt was made to create porous tin oxide film on copper substrate by anodizing the electrodeposited tin. Nevertheless, the full anodization of tin film on a copper substrate led to the mechanical disintegration of the anodic tin oxide, due most likely to the vigorous gas evolution and the surface oxidation of copper substrate. The adhesion of anodic tin oxide to the substrate, together with the initial reversibility and cycling stability, needs to be further improved for its application to high-power electrode materials in lithium batteries.
        4,000원
        25.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A cobalt oxide - tin oxide nanocomposite based gas sensor on an SiO2 substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of H2. The composites showed a highest response of 240% at 250˚C upon exposure to 4% H2. This response is higher than those observed in pure SnO2 (90%) and Co3O4 (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.
        4,000원
        26.
        2010.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tin oxide thin films were prepared on borosilicate glass by rf reactive sputtering at different deposition powers, process pressures and substrate temperatures. The ratio of oxygen/argon gas flow was fixed as 10 sccm / 60 sccm in this study. The structural, electrical and optical properties were examined by the design of experiment to evaluate the optimized processing conditions. The Taguchi method was used in this study. The films were characterized by X-ray diffraction, UV-Vis spectrometer, Hall effect measurements and atomic force microscope. Tin oxide thin films exhibited three types of crystal structures, namely, amorphous, SnO and SnO2. In the case of amorphous thin films the optical band gap was widely spread from 2.30 to 3.36 eV and showed n-type conductivity. While the SnO thin films had an optical band gap of 2.24-2.49 eV and revealed p-type conductivity, the SnO2 thin films showed an optical band gap of 3.33-3.63 eV and n-type conductivity. Among the three process parameters, the plasma power had the most impact on changing the structural, electrical and optical properties of the tin oxide thin films. It was also found that the grain size of the tin oxide thin films was dependent on the substrate temperature. However, the substrate temperature has very little effect on electrical and optical properties.
        4,000원
        27.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objectives of this study were the development of a synthesis technique for highly active nanosized ITO powder and the understanding of the reaction mechanisms of the ITO precursors. The precipitation and agglomeration phenomena in ITO and precursors are very sensitive to reaction temperature, pH, and coexisting ion species. Excessive ion and ions had a negative effect an synthesizing highly active powders. However, with a relevant stabilizing treatment the shape and size of ITO and precursors could be controlled and high density sintered products of ITO were obtained. By applying the reprecipitation process (or stabilization technique), highly active ITO and powders were synthesized. Sintering these powders at for 5 hours produced 97% dense ITO bodies.
        4,000원
        28.
        2008.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the structural, optical, and electrical properties of amorphous silicon suboxide (a-SiOx) films grown on indium tin oxide glass substrates with a radio frequency magnetron technique from a polycrystalline silicon oxide target using ambient Ar. For different substrate-target distances (d = 8 cm and 10 cm), the deposition temperature effects were systematically studied. For d = 8cm, oxygen content in a-SiOx decreased with dissociation of oxygen onto the silicon oxide matrix; temperature increased due to enlargement of kinetic energy. For d = 10 cm, however, the oxygen content had a minimum between 150˚ and 200˚. Using simple optical measurements, we can predict a preferred orientation of liquid crystal molecules on a-SiOx thin film. At higher oxygen content (x > 1.6), liquid crystal molecules on an inorganic liquid crystal alignment layer of a-SiOx showed homogeneous alignment; however, in the lower case (x< 1.6), liquid crystals showed homeotropic alignment.
        4,000원
        30.
        2007.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        3,000원
        31.
        2006.04 구독 인증기관·개인회원 무료
        Tin oxide nanoparticles (n-SnO and ) were synthesized by the inert gas condensation (IGC) method under dynamic gas flow of oxygen and argon at various conditions. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) method were used to analysis the size, shape and crystal structure of the produced powders. The synthesized particles were mostly amorphous and their size increased with increasing the partial pressure of oxygen in the processing chamber. The particles also became broader in size when higher oxygen pressures were applied. Low temperature annealing at in air resulted to crystallization of the amorphous n-SnO particles to .
        33.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to fabricate a high density sintered body of ITO, nano-sized ITO powders were synthesized by coprecipitation methods. Aqueous solutions of indium and tin salts were mixed and coprecipitated by changing their pH. Coprecipitated ITO powders possessed 20-30 nm crystallite size and a relatively high BET value however, aggregation of particles were occurred. Therefore, a novel recrystallization technique was applied in order to eliminate the aggregates. The recrystallized ITO material consists of a little bit larger needlelike crystals, , and it possesses a higher BET value compared to the plain coprecipitated material . Metastable phase formation and higher content of aggregated particles were observed in the coprecipitated materials. Densification was complete after 5 hour sintering at for the recrystallized powders while densities of the coprecipitated powders were below
        4,000원
        36.
        1999.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        투명차폐재를 목적으로 Indium Tin Oxide (ITO) 투광성 박막을 제조하고 전자파 차폐특성에 대해 조사하였다. 박막은 RF magnetron co-sputtering 증착장비를 사용하여 제작하였다. RF 인가전력, Ar 및 O2분압, 기판온도를 변화시키며 전기전도도와 투광성을 겸비한 박막의 조성과 구조에 관한 실험을 진행하였다. 최적의 증착조건은 300˚C의 기판온도, 20sccm의 아르곤 유량, 10sccm의 산소유량, 그리고 In과 Sn의 인가전력이 각각 50W와 30W일 경우였으며, 이때 얻어진 박막은 육안으로 분명할 정도의 투광성을 보였고 5.6×104mho/m의 높은 전기전도도를 나타내었다. 이렇게 제조된 ITO 박막의 전자파 차폐효과를 차폐이론에 의해 분석하였다. 박막의 전기전도도, 두께, skin depth로부터 차폐기구(흡수손실, 반사손실, 다중반사 보정항)에 대해 고찰하였다. 계산된 차폐효과는 26dB의 값을 보여 투광성 차폐재로 ITO 박막의 사용 가능성을 제시할 수 있었다.
        4,000원
        37.
        1999.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        본 실험에서는 리튬 이차 박막전지의 음극물질로 주석 산화물 박막을 RF magnetron sputter을 이용하여 증착하였다. RF power를 2.5w/cm2로 고정시키고, 공정압력을 5mtorr에서 30mtorr까지 변화시키면서 막의 결정성 및 응력 변화, 굴절률 등을 측정하여 주석 산화물 박막의 음극 특성을 조사하였다. 분석한 결과, 압력이 증가함에 따라 증착 속도는 125Å/min에서 58Å/min까지 감소하였으며, 결정 구조는 (110)면에서 (101)면과 (211)면으로 천이됨을 보였다. 또한 막응력은 공정압력 20mtorr를 기준으로 압축응력에서 인장응력으로 바뀌었고, 굴절률도 1.93에서 1.79로 감소하였다. 공정압력변화에 따른 충방 전 시험결과 공정압력 5mtorr에서 가장 큰 가역적 용량(483.91μAh/cm2-μm을 보였으나, 사이클이 진행될수록 사이클 퇴화가 점차 증가하였고, 10mtorr에서는 가역적 용량 및 사이클 특성 모두 좋은 것으로 나타났다. 이는 공정 압력이 감소함에 따라 막의 밀도의 증가로 전기 화학적으로 반응할 수 있는 활물질의 양이 증가한 것으로 생각되며 또한, 사이클 특성은 막응력에 의해 크게 영향을 받는다고 생각된다.
        3,000원
        1 2