검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 284

        101.
        2017.09 KCI 등재 서비스 종료(열람 제한)
        Knowledge of the chromosomal constitution of the ancestors of modern soybean will complement plant breeding efforts to improve agronomic and economic characteristics of soybean. Variation block (VB)-based comparison using genome-wide insertion/deletion (InDel) markers was used on a diverse panel of 147 soybean cultivars to assess the impact of chromosomal changes during modern breeding. There were identical variation patterns of the examined InDels consistently appearing in the genome parts arising from parental varieties, indicating that soybean chromosomes in descendants should be all determined by genetic reshuffling of VBs inherited from parental chromosomes. Structure analysis of the accessions through the 202 InDels separated the accessions into four subgroups. Gene introgression revealed by the structure analysis agreed with the fact that a limited number of landraces and elite varieties were introduced and used as donors for breeding soybean cultivars in pedigree analysis. Especially, VBs became more reshuffled over time as a result of the breeding process, which resulted in using breeding parents with new VB-types for improving the end-use value of soybean. Therefore, their clustering using the 202 VB-specific InDels is strongly influenced by the difference in breeding ancestors among the subgroups. This indicates that the 202 InDel markers are very useful for genetic study by analyzing the reshuffling patterns of the parental genomes in the descendant.
        107.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        Eleven RAPD primers were assessed to analyze genetic diversity of Korean wheat varieties and to develop DNA marker for cultivar identification. The average of the number of polymorphic bands was 5.2 and PIC values showed 0.48, respectively. Ten major clades were presented by phylogenetic analysis. Three cultivars containing Uri, Hanbeak and Jonong were distinct from the others in the phylogenetic dendrogram. Seven cultivar-specific fragments were detected from 11 RAPD fingerprinting among 35 wheat cultivars and they were sequenced. Four Korean wheat cultivars, Eunpa, Jopoom, Yeonbaek and Jeokjoong, were identified newly by four markers, 84, 173, 174 and KWSM011. We convince that these new DNA markers are useful for cultivar fingerprinting and are applied to marker-assisted selection in wheat breeding program.
        108.
        2017.05 서비스 종료(열람 제한)
        Background : Panax ginseng C.A. Meyer is a perennial herb belongs to the family Araliaceae. Wild-cultivated ginseng (WCG) is a specific type of ginseng in Korea which cultivated on artificial forest cultivation method. To obtain a WCG which is similar to wild ginseng (WG), this method usually performed in a mountain using seeds or seedlings of cultivated ginseng (CG) and WG. WCG is very expensive because it is difficult to cultivate. However, systematic cultivation method have not yet been developed compared to high added value. Furthermore, very high price of WCG caused the problem that Panax notoginseng or Panax quinquefolium are sold as WCG in Korean market. In this study, we analyzed the genetic diversity of WCG collected from five areas in Korea using SSR markers. Methods and Results : WCG samples were collected from five areas in Korea (Bucheon, Cheongju, Hoengseong, Judeok and Ulsan). DNA extraction was performed using CTAB method. SSR markers were collected from the published papers. After test PCR using the markers, one of the primer pair was labeled with fluorescence dye (FAM, NED, PET, or VIC) and GeneScan analysis were performed. DNA amplification was conducted using T-100 Thermal Cycler (Bio-Rad). PCR products were separated by capillary electrophoresis on the ABI 3730 DNA analyzer (Applied Biosystems). Conclusion : Eight SSR markers were collected from the published literature and used for the analysis. From the 8 tested SSR markers, 7 SSR markers showed polymorphism between varieties. GenScan analysis were performed using the selected SSR markers to analyze the phylogenetic relationship of WCG. From the results, WCG cultivated in Korea showed that they have a very diverse genetic background.
        109.
        2017.05 서비스 종료(열람 제한)
        Background : Codonopsis lanceolata is a perennial plant of Campanulaceae and mainly distributed in East Asia such as Korea, China, and Japan. C. lanceolata has a unique taste and aroma, and it is rich in minerals such as phosphorus and calcium, and vitamin B1 and B2, so our ancestors used the plant as medicinal herb and edible vegetable. However, systematic cultivation and development of varieties have not been achieved compared to demand or high added value. The genetic diversity and relationship analysis of the plants help to increase the efficiency of breeding through genetic variation. Methods and Results : Ten species of Codonopsis plants were used as materials and DNA was extracted from each 4 individuals per species and quantified at a concentration of 10 ng /㎕. The extracted DNA was pooled by species and PCR was performed using the EST-SSR marker developed based on C. lanceolata in the previous study. PCR amplification was carried out using a denaturation at 94℃ for 30 sec, annealing at 58℃ for 30 sec and extension at 72℃ for 30 sec, repeated for 35 total cycles. The PCR products were separated in a 4% agarose gell at 100 V for 40 min. Conclusion : In this study, C. lanceolata collections was determined among several Codonopsis species using these molecular marker. It is expected that the data of this study can be used as reference for genetic polymorphism analysis and related gene studies of Codonopsis species.
        110.
        2017.05 서비스 종료(열람 제한)
        Background : Codonopsis lanceolata is a perennial plant of Campanulaceae with characteristic flavor and aroma and this plant has saponin, flavonoid, and inulin, which are reported to have physiological activity and antioxidant activity. In contrast, breeding or study of C. lanceolata varieties had not been done for a long time. Genetic polymorphism and phylogenetic relationship analysis of the plants by region of the crops can help the collection of genetic backgroud data for variety development. Methods and Results : In this study, we collected 26 C. lanceolata lines (95 individual plants) from 26 regions in Korea. We genotyped the collected lines using SSR markers developed in the previous study and analyzed the population structure based on the results. Population structures were analyzed using model-based STRUCTURE software (version 2.3.4) using the following parameters: Number of clusters (K) set = 1 to 12; Number of Iterations = 5; Length of Burning Period = 100,000; Number of MCMC (Markov Chain Monte Carlo) Reps after Burnin = 100,000. As a result, Of the 26 collections, were genetically grouped into 6 or 7 groups. Conclusion : The 26 C. lanceolata collections (95 individual plants) were genetically grouped but not grouped by collected regions. These results suggest that C. lanceolata has diverse genetic backgrounds and this data could be used as a basis for genetic polymorphism analysis of Codonopsis species.
        111.
        2017.05 서비스 종료(열람 제한)
        Background : Cucuma longa L., in the family Zingiberaceae, is distributed in tropical and/or sub-tropical regions mainly in India and China. This species is commonly called tumeric, powder is used as medicinal herbs and/or flavor enhancer. It has been cultivated in southern region mainly Jindo. However, it might be possible to extend cultivation region due to rise in average temperature. In order to select superior lines, agronomic characteristics is commonly used. Because this is not the ultimate solution, the DNA marker approach has benefited the modern plant breeding. Therefore an easy approach by using one kind of primer have been developed from random amplification of polymorphic DNA sequences (RAPD) to discriminate effectively between different cultivars of Cucuma species Methods and Results : DNAs were extracted from the harvested roots of Cucuma sp. using DNeasy plant Mini kit (Qiagen, Hilen, Germany). These plants cultivated from GARES (Hamyang) and used for PCR amplification. The relative concentration of the extracted DNA was estimated Nano Drop ND-1000 (NanoDrop Technologies, Wklmington, De, USA) and final DNA concentration was adjusted to 5.5 ng/㎕. In this study 9 primer pairs were tested on 8 Cucuma sp. These primers showed polymorphism in Cucuma sp. The cluster dendogram showed that the similarity coefficients ranged from 0.68 to 0.87, CUR02 turned out to be CUR11, and CUR16 is similar to CUR17. Conclusion : These finding could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Cucuma species. These data on polymorphism difference based on RAPD will be give us invaluable breeding information by selection of superior lines.
        112.
        2017.05 서비스 종료(열람 제한)
        Background : Cudrania tricuspidata Bureau is a widely used medicinal perennial woody plant. Obtaining information about the genetic diversity of plant populations is highly important for conservation and germplasm utilization. In this study, we developed single nucleotide polymorphism (SNP) markers derived from chloroplast genomic sequences to identify distinct Korean-specific ecotypes of C. tricuspidata via amplification refractory mutation system (ARMS)-PCR analyses. We performed molecular authentication of twelve C. tricuspidata ecotypes from different regions using DNA sequences in the chloroplast TrnL-F intergenic region. Methods and Results : SNPs were identified based on the results of nucleotide sequence for the intergenic region of TrnL-TrnF gene (chloroplast). Molecular markers were designed for those SNPs with additional mutations on the second base from SNPs for amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). HRM pattern analyses were performed using the Mx3005P QPCR System (Agilent Technologies, CA, USA). Conclusion : We collected 12 individual lines of C. tricuspidata from various region in South Korea and China. Based on the nucleotide sequence in the trnL-trnF intergenic region of these lines, six SNPs and a deletion of 12 bps were identified and 12 individual lines were able to be grouped in one Korean ecotype and two different ecotypes of chinese lines, chinese line 1 and 2. The SNP markers developed in this study are useful for rapidly identifying these specific C. tricuspidata ecotypes collected from different regions.
        113.
        2017.05 서비스 종료(열람 제한)
        Background : Adenophora triphylla var. japonica (Regel) H. Hara shows vegetative growth by radical leaf until 1 year after sowing and shows reproductive growth during the second year and there is a characteristic of bolting by turning into cauline leaf. In addition, the phenotypes of plants varies even though they are belonging to the same species. For this reason, there is a limit for the classification of the species by the method of visual examination. Methods and Results : Simple sequence repeat (SSR) markers were developed based on the genomic sequence of A. triphylla using next generation sequencing to prepare the basis of molecular breeding and analyze the genetic diversity. Ninety-five primer sets including tri-, tetra- and penta-nucleotide motif types were randomly selected and they were applied to mixed genomic DNA and finally 39 primer sets showing from two to four bands were selected and used for genetic relationship analysis. Conclusions : Using the next generation sequencing, 39 polymorphic SSR markers were developed.
        114.
        2016.10 서비스 종료(열람 제한)
        Background : Gentinae Macrophyllae Radix is one of the traditional medicines originated from the roots of multiple plants, Gentiana macrophylla Pall., Gentiana straminea Maxim., Gentiana crassicaulis Duthie ex Burkill and Gentiana dahurica Fisch., in Gentianaceae. Multi-origin traditional medicine usually has adulteration problem based on the morphological similarity and/or misunderstanding the species. Therefore, accurate and reliable identification criteria to ensure drug safety and quality is necessary. Methods and Results : We collected four original species of Gentinae Macrophyllae Radix from plantations and markets in China and Korea. DNA barcoding with four barcoding markers (Internal Transcribed Spacer (ITS), rbcL, trnL intron, trnL-F intergenic sapcer) was performed. Intra-specific variation was observed in ITS nucleotide sequence however, successfully distinct four original species based on the nucleotide discrepancy while trnL intron has no difference. trnL-F intergenic spacer has two transitions(T→C and A→G) sites only in G. crassicaulis and rbcL shows one transition(C→T) site in G. dahurica and G. macrophylla. Phylogenetic relationship analysis of the Gentinae Macrophyllae Radix revealed two major clades – clade I including three groups, G. macrophylla, G. straminea and G. dahurica, and clade II including G. crassicaulis. This aspects was shown more clear with multi-region combined analysis. Conclusion : DNA barcoding will be accurate and powerful criteria for the analysis the origin of Gentinae Macrophyllae Radix. However, single region analysis might be deficient such as trnL intron, rbcL and trnL-F intergenic spacer results in this research. Multi-region combined analysis based on the multiregional DNA barcode markers will be overcome the disadvantage and also increase the precision.
        115.
        2016.10 서비스 종료(열람 제한)
        Background : Angelica gigas is a monocarpic perennial plant. A. gigas, also called DangGui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas. but, Chinese using Angelica sinensis and Japanese using Angelica acutiloba with the same name 'DangGui'. The biggest problem in the use of A. gigas is the confusion with A. acutiloba or A. sinensis. This confusion can cause an medical accident or lack of pharmacological ingredients. In this study, we developed chloroplast InDel markers that can distinguish A. gigas, A. acutiloba or A. sinensis. Methods and Results : We collected 14 Angelica plant samples including A. gigas, A. acutiloba and A. sinensis and extrated DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept -20℃. We designed the primer sets using CLC Main Workbench based on chloroplast DNA InDel region of between A. gigas and A. acutiloba. PCR were performed on the 14 Angelica plant samples including A. gigas, A. acutiloba and A. sinensis (5 repeats each). Electrophoresis was performed using fragment analyzer automated CE system. We designed 6 InDel primer sets and the primer sets amplified the amplicons effectively. Three of the 6 primer sets showed polymorphism. Conclusion : We could distinguish A. gigas, A. acutiloba, and A. sinensis using 2 newly developed InDel markers.
        116.
        2016.10 서비스 종료(열람 제한)
        Background : Codonopsis lanceolata is a flowering perennial climber. The roots are used as medicinal materials or vegetables. C. lanceolata is distributed in India and East Asia such as China, Japan as well as Korea. Recently, demand for C. lanceolata is increasing as a healthy food. In South Korea, this plant is widely cultivated in Gangwon-do province. Although, C. lanceolata is one of the most important medicinal plants in Korea, an elite, inbred line or a variety has not been developed yet. Simple sequence repeat (SSR) marker is a powerful tool for analysis of genetic relationships. In addition, it is a useful tool for studying the non-reference plant genome, due to its even distribution throughout the genome, as well as its high polymorphism between individuals. Methods and Results : We constructed microsatellite-enrichment libraries using C. lanceolata genomic DNA, and obtained a total of 226 non-redundant contig sequences. Routine PCR was performed using gDNA as templates for the polymorphic markers screening. Finally, total 15 polymorphic SSR markers based on C. lanceolata genomic sequences were successfully developed. These markers were applied to 53 C. lanceolata collected from Korea. 103 alleles of the 15 SSR markers ranged from 3 to 19 alleles at each locus, with an average of 6.87. The average of observed heterozygosity and genetic diversity were 0.42 and 0.62, respectively. The average of polymorphism information content (PIC) value was 0.57. The genetic distance value ranged from 0.73 to 0.93, and there was no observed distinct group according to the collecting areas. Conclusion : We developed 15 novel SSR markers from C. lanceolata genomic sequences for further genetic studies. Also, we concluded that the lineage of C. lanceolata collected in Korea has not been established systematically.
        117.
        2016.10 서비스 종료(열람 제한)
        Background : In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results : A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions : These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.
        118.
        2016.10 서비스 종료(열람 제한)
        Background : The advancement of next-generation sequencing technology dramatically reduces the cost for sequencing and it contributes to create a new research environment that utilizes large amount of genome sequences to answer many biological questions. With this new research trend, reference genome sequences of several major crops have been released to the research community and utilized in various researches in agriculture. Coupled with molecular breeding technology, NGS based genome research will possibly allow selecting a new plant material possessing useful traits in early stage and efficiently developing a superior cultivar. Methods and Results : The objectives of this research are to collecting various genetic variations (SNPs, indels and TE mediated variations) in major and minor crops, to develop molecular markers using NGS based genomic data (resequencing, GBS, transcriptome), and to develop a visualization tools to enhance the utility of the NGS data. Currently major analysis pipelines have been developed to detect SNPs, indel and polymophic SSRs using whole genome and transcriptome data, and a pipeline for identification of MITE insertion polymorphism is under development. In addition to that, for orphan crop, we also implemented an efficient and robust method to assemble a complete chloroplast, mitochondria and 45S rDNA using low coverage whole genome data in order to develop an inter- and intra-specific molecular barcode markers. Conclusion : NGS provide a new level of researches in many crop plants. Large amount of genomic information provides an opportunity to understand domestication and genetic variations, and to develop a better crop for future.
        119.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        The rice recombinant inbred lines derived from Milyang23 and Gihobyeo cross were used in genetic mapping and QTL analysis studies. In this study, we developed a new 101 CAPS markers based on the SNPs in the whole genome region between these varieties. As a result, the total genetic distance and average distances were 1,696.97 cM and 3.64 cM, respectively. In comparison to the distance of the previous genetic map constructed based on 365 DNA markers, the new genetic map was found to have a decreased distance. The map was applied for the detection of QTLs on all seven traits relevant to diameter of stem internode, length of culms, length of panicles and the number of panicles including the correlation analysis between each trait. The QTLs results were similar to the report in previous studies, whereas the distance between the markers was narrowed and accuracy increased with the addition of 101 CAPS markers. A total of 9 new QTLs were detected for stem internode traits. Among them, qI1D-6 had higher LOD of 5.1 and phenotype variation of 50.92%. In this experiment, a molecular map was constructed with CAPS markers using next generation sequencing showing high accuracy for markers and QTLs. In the future, developing more accurate QTL information on stem internode diameters with various agriculturally important traits will be possible for further rice breeding.
        120.
        2016.08 KCI 등재 서비스 종료(열람 제한)
        Background: In the herbal medicine market, Angelica gigas, Angelica sinensis, and Angelica acutiloba are all called "Danggui" and used confusingly. We aimed to assess the genetic diversity and relationships among 14 Angelica species collected from different global seed companies. Toward this aim we developed DNA markers to differentiate the Angelica species. Methods and Results: A total of 14 Angelica species, A. gigas, A. acutiloba, A. sinensis, A. pachycarpa, A. hendersonii, A. arguta, A. keiskei, A. atropurpurea, A. dahurica, A. genuflexa, A. tenuissima, A. archangelica, A. taiwaniana, and A. hispanica were collected. The genetic diversity of all 14 species was analyzed by using five chloroplast DNA-based simple sequence repeat (SSR) markers and employing the DNA fragment analysis method. Each primer amplified 3 - 12 bands, with an average of 6.6 bands. Based on the genetic diversity analysis, these species were classified into specific species groups. The cluster dendrogram showed that the similarity coefficients ranged from 0.77 to 1.00. Conclusions: These findings could be used for further research on cultivar development by using molecular breeding techniques and for conservation of the genetic diversity of Angelica species. The analysis of polymorphic SSRs could provide an important experimental tool for examining a range of issues in plant genetics.