본 연구는 중소벤처기업부가 추진하는 정책사업인 로컬콘텐츠 중점대 학을 중심으로, 최근 2년간 온라인에서 형성된 담론의 구조와 사회적 수 용 양상을 소셜 빅데이터 분석을 통해 규명하는 데 목적이 있다. 이를 위해 네이버와 다음의 블로그, 뉴스, 웹문서 등 다양한 채널에서 수집한 데이터를 기반으로 텍스트 마이닝(단어빈도, TF-IDF, N-gram), 개체명 인식, 2-mode 매트릭스 분석, 감성 분석, CONCOR 분석, LDA 토픽모 델링 및 의미기반 클러스터링을 수행하였다. 분석 결과, ‘대학’, ‘콘텐츠’, ‘창업’, ‘지역’, ‘지원’ 등 핵심어를 중심으로 한 의미구조가 형성되어 있 었으며, 담론은 대체로 긍정적 정서를 포함하고 있었다. 또한 대학, 지역 기관, 중소기업 간 협력 네트워크가 주체별로 상이한 양상을 보이며 다 층적 실행 구조를 보여주었다. 본 연구는 로컬콘텐츠 중점대학의 사회적 인식과 정책적 함의를 담론 기반으로 조망함으로써, 향후 제도 설계 및 지역혁신전략 수립에 기초자료를 제공하고자 한다.
효과적인 해양 교통관리 및 사고 예방 체계 구축에 있어서 AIS는 매우 중요한 요소이다. AIS는 선박의 동적, 정적, 항해 정보를 송수신하여 항해 의사결정을 지원하고 효과적인 선박 교통관제에 도움을 준다. 이러한 AIS는 환경적 요인, 기계적 요인 등에 의해서 손실 이 발생하며, 손실이 생긴 AIS 데이터는 선박 운항자 및 관제의 측면에서 의사결정에 혼동을 야기한다. 때문에, 본 연구에서는 AIS 데이터 를 통해 선박 항적 데이터를 수신하고, 해당 항적 데이터의 손실을 복원한다. AIS 데이터 수신 시 저비용의 싱글보드 컴퓨터인 Raspberry Pi와 AIS 수신 보드인 dAISy HAT을 활용하여 하드웨어를, Raspberry Pi의 운영체제인 LINUX환경과Open chart plotter인 OPENCPN을 통해 소 프트웨어를 구성하였다. 해당 시스템을 활용하여 수신한 AIS 데이터의 손실이 발생하는 데이터 중 활용이 가능한 위도, 경도, 시간 데이 터를 통해 손실이 발생한 구간의 데이터를 보간하고, 보간된 데이터는 “INTERP”라는 태그를 통해 기존의 데이터와 함께 인터넷 웹 서버 인 AWS S3에 저장한다. 본 연구를 통하여, AIS 수신기를 통하여 선박 항적 데이터를 수신하고, 손실이 발생한 부분을 보간함으로써 항적 데이터의 활용도를 높일 수 있을 것으로 보인다. 향후 손실된 AIS 데이터로 인한 선박 항적 데이터의 복원을 위한 다양한 기법을 활용한 연구가 필요하다.
기후변화와 식품공급망의 복잡성 증대로 식품 위해요소 의 발생 경로와 패턴이 다변화됨에 따라, 과학적 예측과 선 제적 개입이 가능한 예방형 식품안전 관리체계의 필요성이 대두되고 있다. 본 연구는 기후·환경 요인이 식품 위해요소 에 미치는 영향을 분석함으로써, 기후 민감성이 높은 위해 요소를 식별하고 예측 가능성과 주요 환경인자를 도출하였 다. 아울러 국내외 데이터 기반 위해예측 시스템의 운영 사 례를 비교·분석함으로써, 식품위해예측센터의 실질적 운영 과 역할을 위한 발전방향을 제시하였다. 본 연구를 통해 향 후 식품위해예측센터가 식품안전 정책의 과학화와 지능화 를 이끄는 전략적 플랫폼으로 기능하고, 예방 중심의 관리 체계로의 전환을 유도할 수 있도록 실효적 토대와 정책적 방향성을 제공하고자 한다.
Stroke is one of the major causes of death worldwide, and in Korea, it has the second highest mortality rate after cancer. Stroke patients require continuous observation and rehabilitation treatment after onset, and in particular, paralysis symptoms are likely to worsen during rehabilitation, emphasizing the need for a real-time monitoring system. Meanwhile, the importance of medical data quality control (QC) algorithms is increasing. In this study, various causes such as failure of sensors such as voltage, current, and temperature of the patient's imaging device diagnostic device, or power loss, may cause malfunctions and transmit inaccurate data. Therefore, in order to secure the reliability of the patient's imaging device diagnostic device data, we plan to design data analysis and algorithms based on QC data of the imaging device diagnostic device. In order to design data analysis and algorithms based on QC data, a system capable of measuring and analyzing sensor data of imaging device diagnostic equipment was built. The reference values of the algorithms to be developed, such as physical limit tests, continuity tests, step tests, median filter tests, and frequency distribution tests, were derived. Voltage, current, and temperature sensor data were statistically analyzed, and in the case of analysis that changes in real time, algorithm S/W was inserted to calculate in real time. It is judged that by monitoring in real time, efficient management and maintenance of the device, and rapid response to device failures will be possible. In the case of device failure, various accidents and high costs can occur. Therefore, if real-time failures are confirmed and rapid maintenance is possible, maintenance costs can be reduced and reliability can be improved, so it is judged that efficient management of the device will be possible.
This study aims to explore the public perception of sports welfare by employing big data analysis techniques and to analyze it through a multi-layered lens grounded in Bronfenbrenner’s ecological systems theory. To this end, text mining software Textom and Ucinet 6 were utilized to examine online textual data related to “sports welfare” collected from May 2017 to February 2025. frequency analysis, TF-IDF analysis, degree centrality analysis, and CONCOR analysis were conducted. The results identified keywords such as “physical education.” “fitness.” “citizens.” “society.” “support.” “disability.” “voucher.” “university.” and “center.” as having high co-occurrence with sports welfare. CONCOR analysis revealed six major clusters: National Fitness 100 Service, Sports Voucher Program, Health Programs at Public Sports Centers, Community-Based Sports Welfare Environment, Training of Sports Welfare Professionals, and Support System Centered on the Korea Sports Promotion Foundation. This study suggests that the level of individual sports welfare can be enhanced through dynamic and interactive relationships between the individual and various environmental systems. Furthermore, to realize sustainable sports welfare, it is essential to develop long-term national strategies that holistically integrate all levels of the ecological systems from the micro system to the chrono system.
This study analyzed the changes in sodium content across different types of kimchi over various storage periods, distinguishing between solids and seasoning (liquid), to better estimate actual sodium intake and improve the food composition databases. Six types (baechu-kimchi, oi-sobagi, buchu-kimchi, baek-kimchi, dongchimi, and nabak-kimchi) were analyzed using ICP-AES. The results were compared with salinometer readings, food composition databases, and nutrition labels from commercial products. Statistical analyses included the Mann-Whitney U test and the Kruskal-Wallis test (=0.05). The findings showed that the seasoning had significantly higher sodium content than the solids and, except for baechu-kimchi and nabak-kimchi, accounted for more than 50% of the total sodium content. Sodium content varied across kimchi types and changed over storage time. Additionally, sodium content measured by ICP-AES significantly differed from those in the food composition databases and commercial nutrition labels, which often over or under-estimated values. Moreover, sodium content in commercial kimchi products exhibited up to a 581-fold difference between the minimum and maximum values. These results suggest that current databases and labeling systems, which do not distinguish between solids and seasoning, may misrepresent the actual sodium intake. Further research and regulatory measures are needed to improve sodium estimation and consumer guidance.
본 연구에서는 UAV(Unmanned Aerial Vehicle) 기반 LiDAR(Light Detection and Ranging), SfM(Structure from Motion), 그리고 수치지형도 기반 DEM(Digital Elevation Model) 데이터를 동일 지역에 적용하여 지형 데이터의 정밀도와 표현 특성을 정량적으로 비교 분석하였다. 경기도 시흥시 범배산 일대를 연구 대상지로 선정하고, 평지, 완사면, 급사면의 세 구역으로 나누어 고도 및 경사 통계, 경사 방향, 경사도 재분류에 따른 면적 분포를 비교하였다. 분석 결과, UAV LiDAR 기반 DEM은 모든 지형에서 가장 높은 정밀도와 해상도를 보여주었으며, SfM 기반 데이터는 비용과 접근성 면에서 유리하나 식생 및 지형 복잡도에 따라 정확도 변동이 크게 나타났다. 수치지형도 기반 DEM은 해상도는 낮지만 일정한 품질을 유지하며 일반적인 지형 분석에 적합한 것으로 나타났다. 본 연구는 지형 조건과 분석 목적에 따른 공간데이터 선택 기준을 제시하고, UAV 기반 지형 정보 활용 전략 수립에 기초자료로 활용될 수 있다.
본 연구는 개선된 무인도 지리정보를 구축하기 위해 폴리곤(Polygon) 기반 무인도 지도와 속성정보를 구축하였다. 연구 결과, 3,460개의 포인트(Point) 데이터와 3,447개의 폴리곤 기반 섬 데이터를 구축하였다. 여기에는 463개의 유인도가 포함되었으며, 무인도 수는 기존 해양수산부의 무인도서 정보조회 서비스에 비해 80개 추가된 것이다. 속성정보로는 59건 이상의 이명과 61개의 무인도 지형 변화 사례를 정리하였다. 무인도 지형 변화는 육화, 소멸, 연결, 병합의 네 가지로 구분하였다. 데이터 구축 과정에서는 해안선 자료의 통합, 불필요한 폴리곤 객체의 정리, 이명 정리 과정에서 일부 한계가 있었다. 이런 한계에도 불구하고 본 연구에서 구축된 데이터는 무인도의 공간적 변화 모니터링과 보전 정책 수립을 위한 기초 자료를 제공하고, 향후 다양한 연구에 활용될 수 있을 것으로 기대된다.