검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 45

        1.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Written examination for driver’s license certification plays a critical role in promoting road safety by assessing the applicants' understanding of traffic laws and safe driving practices. However, concerns have emerged regarding structural biases in multiple-choice question (MCQ) formats, such as disproportionate answer placement and leading linguistic cues, which may allow test-takers to guess the correct answers without substantive legal knowledge. To address these problems, this paper proposes a prompt-driven evaluation framework that integrates structural item analysis with response simulations using a large language model (LLM). First, we conducted a quantitative analysis of 1,000 items to assess formal biases in the answer positions and option lengths. Subsequently, GPT-based simulations were performed under four distinct prompt conditions: (1) safety-oriented reasoning without access to legal knowledge, (2) safety-oriented reasoning with random choices for knowledge-based questions, (3) performance-oriented reasoning using all available knowledge, and (4) a random-guessing baseline model to simulate non-inferential choice behavior. The results revealed notable variations in item difficulty and prompt sensitivity, particularly when safety-related keywords influence answer selection, irrespective of legal accuracy. The proposed framework enables a pretest diagnosis of potential biases in the MCQ design and provides a practical tool for enhancing the fairness and validity of traffic law assessments. By improving the quality control of item banks, this approach contributes to the development of more reliable knowledge-based testing systems that better support public road safety.
        4,300원
        2.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a comparative test operation was conducted through the alternate haul method to examine the selectivity of the four mesh sizes (60 mm, 90 mm, 110 mm, and 130 mm) of the trawl codend. The selectivity was analyzed using the SELECT model considering the fishing efficiency (split parameter) of each fishing gear in the comparative test fishing operation in the trawl and the maximum likelihood method for parameter estimation. A selectivity master curve was estimated for several mesh sizes using the extended-SELECT model. As a result of analyzing the selectivity for silver croaker based on the results of three times hauls for each experimental gear, it was found that the size of the fish caught increased as the size of the mesh size increased. When the selectivity for each mesh size analyzed by the SELECT model considering the split ratio was evaluated based on the size of the AIC value, the estimated split model was superior to the equal split model. Based on the master curve, the 50% selection length value was 2.893, which was estimated to be 136 mm based on the mesh size of 60 mm. In some selectivity models, there was a large deviance between observed and theoretical values due to the non-uniformity of the distribution of fished length classes. As a result, it is considered that appropriate sea trials and selectivity evaluation methods with high reliability should be applied to present trawl fishery resource management methods.
        4,200원
        7.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over finegrained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade modelbased comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.
        4,000원
        8.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The live fire test has been playing a critical role in evaluating the goals-to-meet of the weapon systems which utilize the power of explosives. As such, the successful development of the test systems therein is quite important. The test systems development covers that of ranges and facilities including system-level key components such as mission control, instrumentation or observation, safety control, electric power, launch pad, and so on. In addition, proper operational guidelines are needed with well-trained test and operation personnel. The emerging weapon systems to be deployed in future battle field would thus have to be more precise and dynamic, smarter, thereby requiring more elaboration. Furthermore, the safety consideration is becoming more serious due to the ever-increasing power of explosives. In such a situation, development of live fire test systems seems to be challenging. The objective of the paper is on how to incorporate the safety and other requirements in the development. To achieve the goal, an architectural approach is adopted by utilizing both the system components relationship and safety requirement when advanced instrumentation technology needs to be developed and deteriorated components of the range are replaced. As an evaluation method, it is studied how the level of maturity of the test systems development can be assessed particularly with the safety requirement considered. Based on the concepts of both systems engineering and SoS (System-of-Systems) engineering process, an enhanced model for the system readiness level is proposed by incorporating safety. The maturity model proposed would be helpful in assessing the maturity of safety-critical systems development whereas the costing model would provide a guide on how the reasonable test resource allocation plan can be made, which is based on the live fire test scenario of future complex weapon systems such as SoS.
        4,000원
        9.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The dynamic modulus can be determined by applying the various theories from the Impact Resonance Testing(IRT) Method. The objective of this paper is to determine the best theory to produce the dynamic modulus that has the lowest error as the dynamic modulus data obtained from these theories(Complex Wave equation Resonance Method related to either the transmissibility loss or not, Dynamic Stiffness Resonance Method) compared to the results for dynamic modulus determined by using the Universal Testing Machine. The ultimate object is to develop the predictive model for the dynamic modulus of a Linear Visco-Elastic specimen by using the Complex Wave equation Resonance Method(CWRM) came up for an existing study(S. O. Oyadiji; 1985) and the Optimization. METHODS: At the destructive test which uses the Universal Testing Machine, the dynamic modulus results along with the frequency can be used for determining the sigmoidal master curve function related to the reduced frequency by applying Time-Temperature Superposition Principle. RESULTS: The constant to be solved from Eq. (11) is a value of 14.13. The reduced dynamic modulus obtained from the IRT considering the loss factor related to the impact transmissibility has RMSE of 367.7MPa, MPE of 3.7%. When the predictive dynamic modulus model was applied to determine the master curve, the predictive model has RMSE of 583.5MPa, MPE of 3.5% compared to the destructive test results for the dynamic modulus. CONCLUSIONS: Because we considered that the results obtained from the destructive test had the most highest source credibility in this study, the dynamic modulus data obtained respectively from DSRM, CWRM were compared to the results obtained from the destructive test by using th IRT. At the result, the reduced dynamic modulus derived from DSRM has the most lowest error.
        4,000원
        10.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.
        4,000원
        17.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        비틂시험에서 전단탄성계수와 감쇠비에 상응하는 변형률 산정의 복잡성은 여러 방법에 의하여 해결되어 왔다. 특히, 수정 등가반경법은 공진주/비틂전단 시험의 모든 변형률 영역에서 변형률에 따른 등가반경비 곡선을 보다 효과적으로 나타내는데 적합하다. 감쇠비 산정시 수정 등가반경법을 쌍곡선 모델, 수정 쌍곡선 모델, 램버그오스굿 모델등에 적용시켜 보았다. 연구결과는 감쇠비 산정시 재래식 등가반경법에 의한 하나의 등가반경 수치를 사용하는 것은 적절치 않다는 것을 보여주었다. 이력감쇠뿐 아니라 미소변형률 영역에서의 흙의 감쇠 현상을 고려하기 위하여 새로운 모델이 개발되었고, 이러한 두 가지 복합감쇠에 상응하는 변형률 산정시 부가적 조정이 필요한지 검토해 보았다.
        4,500원
        19.
        2007.04 구독 인증기관 무료, 개인회원 유료
        This paper introduces statistical test principles, statistical procedures and tests for exponential distribution. This paper also shows compliance test plans for success ratio and constant failure rate, and goodness-of-fit tests for Weibull distribution. Moreover, this paper presents procedures for comparision of two constant failure rates, and dependability of products containing reused parts.
        4,500원
        20.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have tested the performance of the Proto-model of Space Infrared Cryogenic System (PSICS), which is a small infrared camera, developed by Korea Astronomy and Space science Institute (KASI), Korea Basic Science Institute (KBSI), Korea Institute of Machinery and Materials (KIMM), and i3system co., as a cooperation project. The purpose of PSICS is to ensure a technology of small infrared cryogenic system for future development of space infrared (IR) cameras. PSICS consists of cryogenic part, IR sensor and electronics part, and optical part. The performance test of each part and the integrated system has been completed successfully. PSICS will be used as a guiding camera for ground-based IR telescopes and a test system for developing a space-borne instrument.
        4,000원
        1 2 3