PURPOSES : This study aimed to identify factors affecting the duration of traffic incidents in tunnel sections, as accidents in tunnels tend to cause more congestion than those on main roads. Survival analysis and a Cox proportional hazards model were used to analyze the determinants of incident clearance times. METHODS : Tunnel traffic accidents were categorized into tunnel access sections versus inner tunnel sections according to the point of occurrence. The factors affecting duration were compared between main road and tunnel locations. The Cox model was applied to quantify the effects of various factors on incident duration time by location. RESULTS : Key factors influencing mainline incident duration included collision type, driver behavior and gender, number of vehicles involved, number of accidents, and post-collision vehicle status. In tunnels, the primary factors identified were collision type, driver behavior, single vs multi-vehicle involvement, and vehicles stopping in the tunnel after collisions. Incidents lasted longest when vehicles stopped at tunnel entrances and exits. In addition, we hypothesize that incident duration in tunnels is longer than in main roads due to the reduced space for vehicle handling. CONCLUSIONS : These results can inform the development of future incident management strategies and congestion mitigation for tunnels and underpasses. The Cox model provided new insights into the determinants of incident duration times in constrained tunnel environments compared to open main roads.
PURPOSES : The primary objective of this study is to analyze the relationship between the factors that affect traffic incident duration in the mainline, tunnel, and ramp segments of an expressway. In addition, this study derived the most suitable statistical prediction model based on various incident duration distributions. METHODS : South Korean expressway crash data for 11 years, from 2011 to 2021, were analyzed. The incident durations on the mainline, tunnel, and ramp segments were selected using the accelerated failure time model, which is a parametric survival analysis approach. RESULTS : The mainline segment showed that the incident duration increased during accidents, including guard pipe collisions, multivehicle collisions, and snowfall. In particular, collisions in a tunnel with shoulder facilities increase the incident duration, while decreasing the time in the ramp segment. CONCLUSIONS : The incident duration model for each segment type yielded the most accurate results when applying a log-logistic distribution.
The Severe Disaster Punishment Act had recently been established in order to promote safety and health (OSH) management system for severe accident prevention. OSH management system is primarily designed based on risk assessments; however, companies in industries have been experiencing difficulties in hazard identification and selecting proper measures for risk assessments and accident prevention. This study intended to introduce an accident analysis method based on epidemiological model in finding hazard and preventive measures. The accident analysis method employed in this study was proposed by the U.S. Department of Energy. To demonstrate the effectiveness of the accident analysis method, this study applied it to two accident cases occurred in construction and manufacturing industries. The application process and results of this study can be utilized in improving OSH management system and preventing severe accidents.
PURPOSES : This study aims to conduct a sensitivity analysis to determine the major factors affecting traffic accidents involving elderly pedestrians.
METHODS : In this study, a regression tree model was built based on a non-parametric statistical model using data on traffic accidents involving elderly pedestrians. Using this model, we analyzed the degree of change in the probability of pedestrian fatalities.
RESULTS : Results of the model analysis show that the first major factor combination affecting traffic accidents involving elderly pedestrians is speeding, night time, and road markers. The second combination is night time and arterial roads (national and local highways). The last combination that may lead to such accidents is heavy vehicles and federally funded local highways.
CONCLUSIONS : Preventive measures, such as speed control, proper lighting, median strips, designation of pedestrian protection zones, and guidance of detours, are necessary to manage high-risk combinations causing accidents of the elderly.
PURPOSES : The main purpose of this study is to identify directions for improvement of triangular islands installation warrants through analysis of the characteristics of crashes and severity with and without triangular islands on intersections.
METHODS : The data was collected by referring to the literature and analyzed using statistical analysis tools. First, an independence test analyzed whether statistically significant differences existed between crashes depending on the installation of triangular islands. As a result of the analysis, individual prediction models were developed for cases with significant differences. In addition, each crash factor was derived by comparison with each model.
RESULTS : Significant differences appeared in the "crash frequency of serious or fatal" and "crash severity" owing to the installation of triangular islands. As a result of comparing crash factors through the individual models, it was derived that the differences were dependent on the installation of the triangular islands.
CONCLUSIONS : As a result of reviewing previous studies, it is found that improving the installation warrants of triangular islands is reasonable. Through this study, the need to consider the volume and composition ratio of right-turn vehicles when installing a triangular island was also derived; these results also need to be referred to when improving the triangular island installation warrants.
PURPOSES : For vehicle-alone accidents with a high mortality rate, it is necessary to analyze the factors influencing the severity of roadside fixed-object traffic accidents.
METHODS : A total of 313 roadside fixed obstacle traffic accidents, variables related to fixed obstacles, and variables related to road geometry were collected. The estimation model was constructed with data collected using an ordinal probit regression model.
RESULTS : Piers, vertical slopes, and distances between roads and objects were the primary causes of increased accident severity.
CONCLUSIONS : Countermeasures, such as object removal, relocation, clear zones, frangibles, breakaway poles, etc., are required for accident-prone or dangerous points.
PURPOSES: The purpose of this study is to investigate factors that affect the severity of children’s traffic accidents using the ordered probit model, and to contribute to a safer road environment for children.
METHODS: This study used children’s traffic accident data during the last four years in the Incheon Metropolitan area. At this point, to analyze only the direct damage caused to children, the analysis was made of accidents where the victim was under 13 years old. Data from a total of 1,110 accidents was collected. When the model was constructed, as it was judged that there could be a difference in factors affecting accident occurrence depending on the zone characteristics, the model was divided into school and non-school zones.
RESULTS: The accident content (severity) is divided into four stages (fatal injury, serious injury, minor injury and injury report) to construct the order-typed probit model. For the analysis, 65 variables of 17 categories were included in the model. The statistical package STATA 13.1 was used to analyze the variables affecting the accident severity with a confidence level of 90% (α·=0.1). Consequently, a total of 15 variables were found to have a statistically significant effect on accident severity in a school zone. In contrast, a total of 22 variables were found to have a statistically significant effect on accident severity in non-school zones. Four variables (daytime, weekday, victim age, intersection) were significant in both models.
CONCLUSIONS: Among the significant variables found in school zones, signal violation and type of vehicle (line bus, rent car, bus, business other vehicles) had a relatively greater effect on the accident severity than the other variables. In non-school zones, eight variables comprising daytime, head-on collision, crossing, over-speed, gender of victim (male), victim age, type of vehicle (construction machinery), driver age (50-59) were found to be significant variables. In conclusion, as well as eliminating factors that can lead to accident reductions, it is necessary to consider zone characteristics to reduce the severity of children’s accidents and promote children’s traffic safety.
PURPOSES: This study aims to contribute to a better road environment, which can result in accident reduction from two-wheeled vehicles, by analyzing factors affecting the two-wheeled vehicles’ accident severities in Incheon Metropolitan City.
METHODS: In this study, the two-wheeled vehicles’ accident severity was classified into four categories (fatal injury, serious injury, minor injury, and injury report) as a dependent variable, and 97 independent variables out of 14 categories were considered to construct an ordered probit model. To determine the factors affecting accident severity, the statistical package LIMDEP was used.
RESULTS: Among the variables used in the analysis, variables related to accident occurrence date (first quarter), region (8-district), accident type (passing the edge of the road of the vehicle for a pedestrian accident, fixed object collision, and overturn of vehicle-only accident), violation type (unobtained safety distance, failure to perform safe driving, violation of intersection driving, and violation of others), the type of road (at the intersection, near the intersection, at the crosswalk, near the crosswalk, etc.), gender of assailant (male), vehicle of victim (pedestrian and motorcycle), and age of victim (under 20) were found to have a statistically significant effect on the severity of the accident.
CONCLUSIONS: The variables related to accident type (fixed object collision and overturn of vehicle-only accident), gender of assailant (male), and vehicle of victim (pedestrian and motorcycle) have turned out increasing the accident severity. In addition, accident occurrence for two-wheeled vehicles is more diverse and vulnerable to damage than automobile accidents. Therefore, it is time to recognize the seriousness of two-wheeled vehicle accidents and to improve the environment and systems for safe driving.
PURPOSES : The purpose of this study is to compare applicability, explanation power, and flexibility of traffic accident models between estimating model using the statistical method and the machine learning method.
METHODS: In order to compare and analyze traffic accident models between model estimated using the statistical method and machine learning method, data acquisition was conducted, and traffic accident models were estimated using statistical methods such as negative binomial regression model, and machine learning methods such as a generalized regression neural network (GRNN). Then, the fitness of model as R2, root mean square error (RMSE), mean absolute percentage error (MAPE), accuracy, etc., were determined to compare the traffic accident models.
RESULTS: The results showed that the annual average daily traffic (AADT), speed limits, number of lanes, land usage, exclusive right turn lanes, and front signals were significant for both traffic accident models. The GRNN model of total traffic accidents had been better statistical significant with R2: 0.829, RMSE: 2.495, MAPE: 32.158, and Accuracy: 66.761 compared with the negative binomial regression model with R2: 0.363, RMSE: 9.033, MAPE: 68.987, and Accuracy: 8.807. The GRNN model of injury traffic accidents also showed similar results of model’s statistical significance.
CONCLUSIONS: Traffic accident models estimated with GRNN had better statistical significance compared with models estimated with statistical methods such as negative binomial regression model.
PURPOSES : This study was conducted to develop a traffic accident prediction model using traffic accident data and management and service evaluation data on bus companies in Busan, and to determine the possibility of establishing customized traffic accident prevention measures for each company.
METHODS: First, we collected basic data on the characteristics of urban bus traffic accidents and conducted basic statistical analysis. Then, we developed traffic accident prediction models using Poisson regression and negative binomial regression to examine the characteristics of major items of management and service evaluation affecting traffic accidents.
RESULTS : The Poisson regression model showed overdispersion; hence, the negative binomial regression model was selected. The results of the traffic accident prediction model developed using negative binomial regression are acceptable at 95% confidence level (a = 0.05).
CONCLUSIONS : The traffic accident prediction model indicates that the management of the traffic record system and internal and external management items in service evaluation have a significant effect on the reduction of traffic accidents. In particular, because human factors are the main cause of traffic accidents, bus traffic accidents are expected to greatly decrease if drivers' dangerous driving behaviors are effectively controlled by bus companies.
Recently, the continuing operation of nuclear power plants has become a major controversial issue in Korea. Whether to continue to operate nuclear power plants is a matter to be determined considering many factors including social and political factors as well as economic factors. But in this paper we concentrate only on the economic factors to make an optimum decision on operating nuclear power plants.
Decisions should be based on forecasts of plant accident risks and large and small accident data from power plants. We outline the structure of a decision model that incorporate accident risks. We formulate to decide whether to shutdown permanently, shutdown temporarily for maintenance, or to operate one period of time and then periodically repeat the analysis and decision process with additional information about new costs and risks. The forecasting model to predict nuclear power plant accidents is incorporated for an improved decision making. First, we build a one-period decision model and extend this theory to a multi-period model. In this paper we utilize influence diagrams as well as decision trees for modeling. And bayesian statistical approach is utilized. Many of the parameter values in this model may be set fairly subjective by decision makers. Once the parameter values have been determined, the model will be able to present the optimal decision according to that value.
PURPOSES: The purpose of this study is to develop a crash prediction model at signalized intersections, which can capture the randomness and uncertainty of traffic accident forecasting in order to provide more precise results. METHODS: The authors propose a random parameter (RP) approach to overcome the limitation of the Count model that cannot consider the heterogeneity of the assigned locations or road sections. For the model’s development, 55 intersections located in the Daejeon metropolitan area were selected as the scope of the study, and panel data such as the number of crashes, traffic volume, and intersection geometry at each intersection were collected for the analysis. RESULTS: Based on the results of the RP negative binomial crash prediction model developed in this study, it was found that the independent variables such as the log form of average annual traffic volume, presence or absence of left-turn lanes on major roads, presence or absence of right-turn lanes on minor roads, and the number of crosswalks were statistically significant random parameters, and this showed that the variables have a heterogeneous influence on individual intersections. CONCLUSIONS : It was found that the RP model had a better fit to the data than the fixed parameters (FP) model since the RP model reflects the heterogeneity of the individual observations and captures the inconsistent and biased effects.
PURPOSES: The goal of this study is the development of roundabout accident models for urban and non-urban areas. METHODS: This study performed a comparative analysis of the regional factors affecting accidents. Traffic accident data were collected for the period 2010~2014 from the TAAS data set of the Road Traffic Authority. To develop the roundabout accident models, the Poisson and negative binomial regression models were used. A total of 25 explanatory variables such as geometry, and traffic volume were used. RESULTS : The key findings are as follows: First, it was found that the null hypotheses that the number of accidents is the same should be rejected. Second, three Poisson regression accident models, which are statistically significant (p2 of 0.154 and 0.385) were developed. Third, it was noted that although the common variable of the three models (models Ⅰ~Ⅲ) is the number of entry lanes, the specific variables are entry lane width, roundabout sign, number of circulatory roadways, splitter island, number of exit lanes, exit lane width, number of approach roads, and truck apron. CONCLUSIONS: The results of this study can provide suggestive countermeasures for decreasing the number of roundabout accidents.
PURPOSES : The purpose of this study is to develop models of accidents occurring at circular intersections related to the time of day and night and driver gender, and to provide countermeasures for safer circular intersections. METHODS: Seventy intersections built before 2008 were surveyed for inclusion in the modeling. Traffic accident data from 2008 to 2014 were collected from the TAAS data set of the Road Traffic Authority. Sixteen variables explaining the accidents including geometry and traffic volume were selected from the literature and seven multiple linear regression models were developed using SPSS 20.0. RESULTS: First, the null hypotheses, that the number of traffic accidents are not related to driver gender or time of day, were rejected at a 5% level of significance. Second, seven statistically significant accident models with R2 value of 0.643-0.890 were developed. Third, in daytime models by gender, when the right-turn-only lane was selected as the common variable, the number of lanes, presence of driveways and speed humps, diagrammatic exit destination sign, and total entering traffic volume were evaluated as specific variables. Finally, in nighttime models by gender, when the diagrammatic exit destination sign was selected as the common variable, total entering traffic volume, presence of right-turnonly lanes, number of circulatory road way lanes, and presence of splitter islands and driveways were identified as specific variables. CONCLUSIONS: This study developed seven accident models and analyzed the common and specific variables by time of day and gender. The results suggest approaches to providing countermeasures for safer circular intersections.
PURPOSES :This study deals with traffic accidents involving trucks. The objective of this study is to develop a traffic accident model for trucks at roundabouts.METHODS :To achieve its objective, this study gives particular attention to develop appropriate models using Poisson and negative binomial regression models. Traffic accident data from 2007 to 2014 were collected from TAAS data set of road traffic authority. Thirteen explanatory variables such as geometry and traffic volume were used.RESULTS :The main results can be summarized as follows: (1) two statistically significant Poisson models (ρ2 = 0.398 and 0.435) were developed, and (2) the analysis revealed the common variables to be traffic volume, number of exit lanes, speed breakers, and truck apron width.CONCLUSIONS :Our modeling reveals that increasing the number of speed breakers and speed limit signs, and widening the truck apron width are important for reducing the number of truck accidents at roundabouts.
Even though cars have a good effect on modern society, traffic accidents do not. There are traffic laws that define the regulations and aim to reduce accidents from happening; nevertheless, it is hard to determine all accident causes such as road and traffic conditions, and human related factors. If a traffic accident occurs, the traffic law classifies it as ‘Negligence of Safe Driving’ for cases that are not defined by specific regulations. Meanwhile, as Korea is already growing rapidly elderly population with more than 65 years, so are the number of traffic accidents caused by this group. Therefore, we studied predictive and comparative analysis of the number of traffic accidents caused by ‘Negligence of Safe Driving’ by dividing it into two groups : All-ages and Elderly. In this paper, we used empirical monthly data from 2007 to 2015 collected by TAAS (Traffic Accident Analysis System), identified the most suitable ARIMA forecasting model by using the four steps of the Box-Jenkins method : Identification, Estimation, Diagnostics, Forecasting. The results of this study indicate that ARIMA (1, 1, 0)(0, 1, 1)12 is the most suitable forecasting model in the group of All-ages; and ARIMA (0, 1, 1)(0, 1, 1)12 is the most suitable in the group of Elderly. Then, with this fitted model, we forecasted the number of traffic accidents for 2 years of both groups. There is no large fluctuation in the group of All-ages, but the group of Elderly shows a gradual increase trend. Finally, we compared two groups in terms of the forecast, suggested a countermeasure plan to reduce traffic accidents for both groups