Maize (Zea mays. L) is one of the major sources of green fodder for livestock in Pakistan. Crop management plays a key role in obtaining high yields for green fodder. Fertilizer application, seed rate, and row spacing are critical components of crop management, which can significantly affect crop biomass. To determine the best production technology, a two-year (2021-2023) study was conducted at the research area of National Agricultural Research Center, Islamabad. Plant height, number of leaves, leaf area, green fodder yield per acre, and green fodder yield per hectare were recorded. Various row spacing (15 cm, 30 cm, 45 cm, and 60 cm), fertilizer ratio (N: P = 55:30, 65:40, 75:50, and 85:60), and seed rates (30 kg/ac, 35 kg/ac, 40 kg/ac, and 45 kg/ac) were applied. Results obtained experiments revealed that in both growing seasons, the maximum green fodder yield was obtained when fertilizer N: P ratio was 75:50 (green fodder biomass: 74.61 t/ha and 72.56 t/ha). Similarly, the optimal seed rate was found to be 40 kg/ac, which resulted in the highest green fodder yield (73.41 t/ha and 72.88 t/ha in two seasons). Furthermore, the plant of maize at row spacing of 30 cm was found to generate the maximum green fodder yield (72.39 t/ha and 72.40 t/ha, respectively). Green fodder yield per hectare was found to be positively correlated with plant height, number of leaves, and leaf area. These findings underscore the significance of applying a fertilizer ratio of N: P = 75:50, a seed rate 40 kg/ac, and a row spacing of 45 cm for higher yields of green fodder in maize crop.
Production technology trials for PARC’s new fodder oat cultivar (PARC-Oat) were conducted at the National Agricultural Research Center (NARC) under rain-fed conditions in Islamabad from 2021 to 2023. The effects of different fertilizer doses, planting densities (seed rates), and inter-row spacing on green fodder yield were studied. The experiment comprised four fertilizer doses of nitrogen and phosphorus (N:P) (55:30, 65:40, 75:50, and 85:60 kg/ha), four seed rate densities (30 kg/ac, 35 kg/ac, 40 kg/ac, and 45 kg/ac), and four inter-row spacings (15 cm, 30 cm, 45 cm, and 60 cm). Results based o n k ey p arameters a ffecting t he y ield of PARC-O at—namely plant height (cm), leaf area (cm²), leaves per tiller, number of tillers per plant, and green fodder yield (t/ha)—indicated that the maximum yield of 72.74 t/ha was observed with the fertilizer dose of 75:50 kg/ha (N:P). Similarly, a seed rate of 40 kg/ha produced optimal planting densities, resulting in the highest green fodder yield of 72.85 t/ha, while an inter-row spacing of 30 cm yielded the maximum green fodder yield of 74.30 t/ha. These results suggest that to achieve maximum green fodder biomass of oats, best management practices should include the application of a fertilizer dose of 75:50 (N:P), a seed rate of 40 kg/ha, and an inter-row spacing of 30 cm.
PURPOSES : This study aimed to perform real-time on-site construction volume management by using Internet of things (IoT) technology consisting of 3D scanning, image acquisition, wireless communication systems, and mobile apps for new and maintenance construction of concrete bridge deck overlays. METHODS : LiDAR was used to scan the overlay before and after construction to check the overlay volume. An enhanced inductively coupled plasma (ICP) method was applied to merge the LiDAR data scanned from multiple locations to reduce noise, and an anisotropic filter was applied for efficient three-dimensional shape modeling of the merged LiDAR data. The construction volume counter of the mobile mixer was directly photographed using an IP camera, and the data were transmitted to a central server via the LTE network. The video images were transmitted to the central server and optical character recognition (OCR) was used to recognize the counter number and store it. The system was built such that the stored information could be checked in real time in the field or at the office. RESULTS : As a result of using LiDAR to check the amount of overlay construction, the error from the planned amount was 0.6%. By photographing the counter of the mobile mixer using an IP camera and identifying the number on the counter using OCR to check the quantity, the results showed that there was a 2% difference from the planned quantity. CONCLUSIONS : Although the method for checking the amount of construction on site using LiDAR remains limited, it has the advantage of storing and managing the geometric information of the site more accurately. Through the IoT-based on-site production management system, we were able to identify the amount of concrete used in real time with relative accuracy.
식량 작물의 확보 및 생산량 예측은 국가 발전에 있어 필수적이며, 국가 경제뿐만 아니라 전 세계 식량 안보에 기여 한다. 최근 환경오염으로 인한 이상기후는 식량 작물 생산량에 직ㆍ간접적으로 부정적 영향을 끼치고 있어, 작물 수확량 예측 불확실성이 높아지고 있다. 특히, 노지 작물의 경우 생산량 감소와 품질 저하 문제가 화두 되고 있다. 이러한 문제는 농가들뿐만 아니라 소비자들에게도 큰 피해를 안겨주고 있다. 이러한 생산량 예측 이슈를 해결하기 위해 최근에는 인공지능 기술이 농업 분야에도 활발히 적용되고 있다. 작물 수확량의 정확한 예측을 위한 머신러닝 기반 연구가 집중적으로 수행되고 있다. 따라서, 본 연구에서는 이와 같은 인공지능 기반의 노지 작물 수확량 예측 기술(머신러닝, 딥러닝, 하이브리드 모델 등) 현황 및 작물 수확량에 가장 영향을 많이 끼치는 모델 파라미터 등을 조사하였다.
본 총설은 탄소중립 및 에너지순환을 실현하기 위한 재생에너지로부터 그린수소 생산 전략 중 하나인 바이오수소 생산 및 정제법에 관해 소개하고자 한다. 바이오수소는 생물질과 미생물과 같은 재생에너지원을 이용하며, 상온 및 상압 등의 마일드한 실험조건에서 작동하여 에너지소비 및 공정비용이 적게 드는 친환경 공정으로 알려져 있다. 하지만, 이러한 바이오 수소를 상업적으로 이용하기 위해서는 해결해야 할 중요한 도전적인 과제가 존재한다. 특히, 바이오수소는 생물반응기내의 복합한 화학반응으로 합성되어, 낮은 수소생산 속도 및 반응기내 다양한 혼합물이 존재하여, 바이오수소 고순도화를 위해서 연속공정 형태의 분리 및 정제 기술이 반드시 필요하다. 이를 위해, 저온 증류법, 압력 흡착법, 분리막법 등을 비롯한 다양한 분리 및 정제 기술이 고순도 바이오수소를 얻기 위해 제안되었다. 본 총설에서는 바이오수소 생산 및 정제 연계화를 위한 비 다공성 고분자 분리막의 가능성에 대해 소개하고자 한다.
홍잠은 숙잠(熟蠶)을 수증기로 익혀서 인간이 섭취할 수 있도록 제조한 다양한 건강 증진 효과가 있는 천연 건강 식품이다. 현재 표준 제조 방법은 수증기로 찐 홍잠을 보관과 판매의 편의를 위하여 급속 냉동하여 동결 건조를 진행하는 것이다. 그런데, 홍잠을 동결 건조하는 과정은 많 은 시간과 비용을 필요로 하여 홍잠 제품 가격의 인상 요인으로 작용하고 있다. 본 연구에서는 홍잠을 수증기로 찐 후 바로 균질 액으로 제조하여 분무 건조하면 분말 제조 비용을 절감할 수 있음을 발견하였다. 그리고 홍잠 균질 액에 식용 단백질 분해 효소를 첨가하여 분해시킨 후, 단 1회의 분무 건조로 제품을 제조할 수 있는 방법을 개발하였다. 특히 홍잠 균질 액이나 효소 분해 홍잠 균질 액은 바로 액상이나 젤리 형태로 일반 또는 환 자용 특수 의료 용도 식품에 활용이 가능함을 보여주었다. 본 연구에서는 생산비용이 감소된 홍잠의 가공 방법을 제안하며 이는 제품 생성의 단가 를 낮추어 제품의 대중화와 양잠 농가의 연관산업 육성을 불러올 것으로 기대된다.
The existing production and manufacturing process was manually operated and the cleaning process was not constant due to poor environmental conditions for several hours, so the production efficiency was significantly lowered and manufacturing cost was increased. In this R&D, productivity improved by doubling the production of 300 units per hour to 700 units, and in this development, manufacturing costs were lowered through this process improvement project based on automotive shoba automation technology.
Various eco-friendly seed disinfection technologies have been developed due to the increase in the global demand for organic food. In order to produce sustainable and eco-friendly agricultural products in Korea, seed disinfection technologies for the production of wholesome seedlings have been researched in diverse ways compared to how they were examined in advanced countries. Both domestically and internationally, the eco-friendly seed disinfection technologies to secure the horticultural crops have been treated by biological or physical methods, such as hot water treatment with ultrasonic disinfection technology, or applying organic agricultural materials like organic acids in plant extracts. However, from a practical perspective, various applied technologies can be implemented in farm fields to disinfect significant agricultural crops, such as lettuce, Chinese cabbage, radish, watermelon, cucumber, paprika, red pepper, ginger, ginseng, and sesame seeds.
The strengthening of environmental regulations has raised interest in alternative energy and electric car. Secondary batteries are such energy storage device, and in this study, a secondary batteries production equipment parts will be manufactured. To this end, molds were designed and manufactured using numerical analysis. The reliability of analysis is to be confirmed through tensile tests and X-ray tests of products cast with manufactured molds. As the results of the casting method design parts was obtained as the average ultimate tensile strength of 178.23N/mm2, 173.85N/mm2 was recorded and good test results were achieved. It is considered that aluminum alloy research and heat treatment technology development should be carried out in the future.
The purpose of this study was to explore how consumer traits(technology anxiety and need for interaction) explain attitude toward self-service technologies in fashion retail stores. We examined if technology anxiety influences perceived productivity and attitude toward self-service technologies, and if so, how the need for interaction with employees moderates the impact of technology anxiety on perceived productivity and attitude. For the purpose of the study, a web-based survey with Korean consumers was conducted. The final sample size was 214. Structural Equation Modeling Analysis and PROCESS in SPSS were employed to test the proposed hypotheses. The findings indicated that technology anxiety negatively affected perceived productivity and attitude toward self-service technologies in which perceived productivity affected attitude positively. Need for interaction with employees was found to moderate the relationship between technology anxiety and perceived productivity. It also moderated the relationship between technology anxiety and attitude. This study contributes to the self-service technology literature by identifying two antecedents of consumer attitude toward selfservice technologies: technology anxiety and the need for interaction. The findings further provide valuable insights to retailers and marketers as to how technology anxiety, perceived productivity, and the need for interaction work in enhancing consumer attitude toward self-service technologies in the context of fashion retail.