검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 40

        1.
        2022.10 구독 인증기관·개인회원 무료
        The high-level nuclear waste (HLW) repository is a 500-1,000 m deep geological disposal system with a very long life expectancy for disposing of high-level waste, which is known to have a half-life of several thousand years. This repository is subject to harsh environmental conditions, such as high temperature and radiation from high-level waste, that can cause deterioration and crack. When radiation escapes through cracks, it can injure persons on the ground. Therefore, it is essential to install a sensor that can detect problems such as cracks. But, since the high-level nuclear waste (HLW) repository is sealed with bentonite and backfill, the sensor cannot be removed or replaced once it has been installed. Therefore, it is necessary to develop a highly durable monitoring sensor that can withstand harsh environmental conditions. Before attempting to improve durability, it is first required to assess durability quantitatively. And an accelerated life test is a widely used method for assessing durability. However, it is important to obtain the same failure mode when conducting a reliability test, such as an accelerated life test. If the accelerated life test is conducted using different failure modes, the dependability of the results is inevitably diminished. Therefore, in this study, a representative failure mode for the piezoelectric sensor used in the accelerated life test was derived through experiments and literature research.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The high-level waste disposal system is an underground structure exposed to complex environmental conditions such as high temperature, radiation, and groundwater. The high-level waste disposal causes structural cracks and deterioration over time. However, since the high-level waste disposal system is a structure that should be operated for a very long time, developing a high-durability monitoring sensor to detect cracks and deterioration is essential. The durability of the sensor can be evaluated by predicting the expected life through the accelerated life test, one of the reliability qualification tests. The most important factor in the accelerated life test design is setting the harsh stress level. This study figured out the harsh stress level of the piezoelectric sensor, which is commonly used for underground structure monitoring. It is possible to determine the appropriate stress level for the accelerated life test by investigating the harsh stress level for the temperature factor. It will contribute to more accurate life expectancy prediction.
        3.
        2022.05 구독 인증기관·개인회원 무료
        The high-level nuclear waste disposal system is a structure with a very long life expectancy, and deterioration and cracking of the structure may occur over time. In addition, the high-level nuclear waste disposal system is in complex extreme conditions such as high temperature, groundwater, and radiation. Therefore, we need to develop a highly durable monitoring sensor that can detect the deterioration and crack of structures in extreme conditions. Since the durability of a sensor is closely related to the sensor lifetime, it is essential to predict the sensor lifetime accurately. The sensor lifetime can be predicted through the reliability qualification test. Among them, the accelerated life test conducted under harsh conditions is widely used as a method to shorten the test period. The major factor in carrying out the accelerated life test is to set the appropriate harsh conditions. Therefore, this study experimentally derived the operating limit of the monitoring sensor. It is essential to set the proper harsh conditions when performing the accelerated life test. Through this study, it is judged that it will be helpful in determining the appropriate stress level when performing the accelerated life test for accurate lifetime prediction.
        4.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The poor durability issue of polymer electrolyte membrane fuel cells is a major concern in terms of their commercialization. To understand the degradation mechanism of the catalysts, an accelerated durability test (ADT) was conducted according to the protocol established by internationally accredited organizations. However, reversible and irreversible factors contributing to the loss of activity have not yet been practically segregated because of the limitations of a batch-type three-electrode system, leading to the misunderstanding of the deactivation mechanism. In this study, we investigated the effect of a fresh electrolyte on the ADT and recovery process. When the fresh electrolyte was used at every range of the cycle, the chances of incorrect detection of dissolved CO and Pt ions in the electrolyte were very low. When the same electrolyte was used throughout the test, the accumulated Pt ions were deposited on the surface of the Pt nanoparticles or carbon support, affording an increased electrochemical surface area (ECSA) of Pt. Therefore, we believe that periodic replacement by a fresh electrolyte or a continuous-flow electrolyte is essential for the precise determination of the structural and electrochemical changes in Pt/C catalysts.
        4,000원
        5.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an accelerated weathering test was performed to examine the variation of thermal insulation performance according to the service life. A widely used class 1 thermal screen (matt georgette + polyethylene (PE) foam + chemical cotton + felt + matt georgette) was selected as the target thermal screen. The ultraviolet irradiation that reached the target thermal screen specimen (60 x 60cm) was 5mW/cm2. Thus, the ultraviolet irradiance was set to 5mW/cm2, and the exposure periods of accelerated weathering conditions on the specimens were set to 0, 282, 847, and 1412h. The radiation exposure periods of the weathering conditions for 0, 282, 847, and 1412h indicate the amount of ultraviolet accumulation for 0, 1, 3, and 5years, respectively. In the accelerated weathering test, the target specimens that completed each exposure phase were subjected to the hotbox test to analyze their thermal insulation performances. Consequently, the thermal insulation performance of the multi-layer thermal screen was estimated to degrade rapidly after approximately two years. In the accelerated weathering condition, a quadratic function model was used to calculate the expected service life, since it adequately described the variation in thermal insulation of the thermal screen according to time. The results showed that when the thermal insulation performance degraded by 5, 10, 20, and 30%, the expected service lives were 2.5, 3.3, 4.5, and 5.5years, respectively.
        4,000원
        6.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Universal joint damage occurred during the operation of a combat vehicle. Damage to the internal bushing and cracks of the rubber cover occurred, and a design change was promoted based on the cause analysis and improvement measures. The failure of the bushing is due to the occurrence of expansion due to fatigue load when the rotation proceeds in the presence of the assembly clearance of the cross joint. In addition, cracks in the rubber cover are caused by the deterioration of the intermetallic rubber surface. Through this failure mechanism analysis, severe durability factors were selected and accelerated durability tests were conducted. In this paper, the final limit life of universal joints can be evaluated through accelerated endurance tests. Furthermore, the endurance life of the product before the change and the endurance life of the product after the change are compared to prove the improvement effect through design changes.
        4,000원
        7.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reliability of the lifting system has to be ensured so that heavy cargo is handled safely during loading and unloading. Therefore, the accelerated life test was performed on the lifting bow shackle, which is highly affected by the main failure mode, among the components of the lifting system. Besides, an efficient inspection method was suggested for the preventive maintenance of the bow shackles. The acceleration index and acceleration coefficient of the bow shackles were calculated by using the life data of them. The guaranteed life data of the bow shackle can be used to predict the useful life in industries related to lifting work.
        4,000원
        8.
        2020.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        사용후핵연료를 저장하는 볼트체결 저장용기의 격납경계를 형성하는 주된 구성요소는 금속 밀봉재이다. 이러한 금속 밀봉 재는 열과 방사선에 의해 그 성질이 저하된다. 또한, 금속 밀봉재가 강한 열에 장기간 노출되면 크리프 현상이 발생한다. 이러한 크리프는 밀봉시스템에 응력 이완을 가져와서, 결국 밀봉재의 건전성을 해치게 된다. 이러한 응력 이완은 금속 밀봉재의 밀봉성능 저하로 이어지며, 저하의 정도에 따라 저장용기의 누설을 야기할 수 있다. 또한, 볼트 체결력의 감소도 밀봉성능 저하에 영향을 미친다. 본 논문에서는 금속 밀봉재의 격납건전성과 볼트체결력 감소를 평가하기 위해 수행한 가속화 시 험의 결과에 대하여 기술한다. 전 시험기간 동안 각 시편에서의 누설률, 볼트 변형률, 금속 밀봉재 주변 온도를 계측하여 분석하였고, 금속 밀봉재는 저장기간 50년 동안 격납건전성을 유지함을 입증하였다. 또한, 가속화 시험의 타당성에 대해서 기술하였다.
        4,000원
        9.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study investigates the abrasion characteristics of coarse aggregate using the Los Angeles (L.A.) abrasion test and the accelerated polishing machine (APM) test. The coarse aggregates are randomly exposed on the surface of asphalt concrete pavements and on exposed aggregate concrete pavements. The exposed aggregates play a very important role in providing skid resistance. Therefore, the adequate abrasion resistance of coarse aggregate must be ensured to maintain the skid resistance during service life. In Korea, the LA abrasion test is conducted according to the KS F 2508 standard for the evaluation of the abrasion resistance of coarse aggregate. However, the road surface abrasion is caused by the friction between the tire and the road surface structure; hence, whether the LA abrasion test, which evaluates the abrasion caused by the impact of coarse aggregates and steel balls, can evaluate the road surface abrasion is questionable. A comparison and an analysis between the APM and LA abrasion tests were conducted herein to evaluate the road abrasion. An analysis was also performed to analyze whether the abrasion characteristics appeared depending on the type of coarse aggregate. METHODS: The results of the APM and LA abrasion tests for various aggregate types were obtained through a series of experiments and literature reviews. The correlation between the LA abrasion loss and the PV data was derived. In addition, the influence of the aggregate type on the abrasion resistance was investigated. RESULTS : An abrasion resistance database was established, and the relationship between the rock types and the abrasion resistance was statistically determined. The results showed that the PV was increased to 0.54 along with a 1% increasing rate of the LA abrasion loss with a 0.67 coefficient of determination. The abrasion resistance was also influenced by the aggregate type, which was found to be statistically significant. CONCLUSIONS: A good relationship between the PV and the LA abrasion loss was obtained, allowing the use of the LA abrasion test (KS F 2508) alone, to reasonably evaluate the abrasion resistance of the exposed aggregate texture. The aggregate types were also found to have an impact on the abrasion resistance.
        4,000원
        10.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the aerospace field, Carbon/Cork composites have been used for rocket propulsion systems as a light weight structural component with a high bending stiffness and high thermal insulation properties. For the fabrication of a carbon composite with a heat insulation cork part, the bonding properties between them are very important to determine the service life of the Carbon/Cork composite structure. In this study, the changes in the interfacial adhesion and mechanical properties of Carbon/Cork composites under accelerated aging conditions were investigated. The accelerated aging experiments were performed with different temperatures and humidity conditions. The properties of the aged Carbon/Cork composites were evaluated mainly with the interfacial strength. Finally, the lifetime prediction of the Carbon/Cork composites was performed with the long-term property data under accelerated conditions.
        4,000원
        11.
        2018.05 구독 인증기관·개인회원 무료
        To be better fit for highways, pavement systems are required to provide comfortable and safe driving and be structurally durable. Composite pavements can be an effective option as they are more durable by placing a high functional asphalt overlay on a rigid concrete base layer. In order to apply a composite pavement system to the field, it is necessary not only to develop technologies that prevent reflecting crack and deterioration of the base layer, but also to improve bonding performance of materials and ensure structural performance as a pavement system against traffic loading. In advanced countries like Japan, USA and Europe, high-functional composite pavement systems are being put into practice across new highway networks. In this study, we evaluated structural performance (rutting, reflecting crack, and deflection) by applying traffic loads of actual highways through an accelerated pavement tester (APT) of a composite pavement section made up of a quiet porous surface laid over a water-proofing layer, a continuously reinforced concrete base, and a lean concrete sub-base layer, which was developed with new pavement methods used for each layer prior to field application. The APT specimen was constructed with paving materials and equipment actually used on site in the same dimensions (W3.5m*L14m*H2m) as actual highway sections in Korea, and 3-axle double-wheel heavy load (45ton) cart type KALES(Korean Accelerated Loading and Environmental Simulator) traveling on the specimen in both directions was used to simulate traffic loading. After applying around 8,574,000 ESALs of traffic loads, no reflecting crack occurred on the asphalt surface of the composite pavement, without surface distress except for rutting. In order to examine what causes rutting of pavements, we surveyed thickness of pavements by layer and measured asphalt density.
        12.
        2018.05 구독 인증기관·개인회원 무료
        The purpose of this study was to investigate the feasibility of converting the results obtained using different rutting performance tests. The correlation between the three simulation tests was analysed to determine the conversion coefficient factor. Two parameters (temperature and speed of simulation testing) were evaluated in this study. The results of this study have shown that the values obtained in the SALS test were lower than those obtained in the HWTT and UKWTT. The conversion of the SALS test results to the HWTT results yielded a good propensity value. The temperature is important parameter for determining the conversion coefficient factor.
        13.
        2018.05 구독 인증기관·개인회원 무료
        Roller-compacted concrete (RCC) has been widely used for construction of pavements [1]. The strength of RCCP can be obtained from not only hydration of binder but also the aggregate interlock resulted from roller-compaction [2]. For this reason, RCCP normally achieves higher strength compared to conventional concrete pavement with similar cement content. Even though RCCP can be provided a good structural performance, it has been difficult to verify the long-term performance though actual field construction. Therefore, this study aimed to investigate the fatigue characteristics and crack development in RCCP based on full-scale fatigue test and accelerated pavement test. In case of full-scale fatigue tests, fatigue behavior was evaluated by using 1 m × 1 m dimensional RCC slab specimens obtained from the field in order to consider the field variability. Fatigue equation derived from this study shows that the number of load repetitions which causes fatigue failure at the same stress level is slightly larger than that of PCA fatigue equation. In order to evaluate the performance of RCCP, two phases of accelerated pavement test (APT) were conducted. In phase one, the performance of RCCP at two different strengths (35.6 and 30.4 MPa) was evaluated. In phase two, the performance of RCCP with different thickness (5, 7.5 and 10 cm) was investigated. The number of load repetition of fatigue crack occurrence in each section was compared to the estimated fatigue failure determined from fatigue equation of RCCP. The crack development in each section was compared to the AASHTO crack model for JPCP. Overall, it was confirmed that RCCP has equal or better performance compared to JPCP the estimation in term of fatigue cracking. The fatigue equation from PCA and cracking model from AAHTO can be used on RCCP at certain design thickness range.
        14.
        2015.04 구독 인증기관 무료, 개인회원 유료
        제품 개발기간의 단축속도가 빨라지는 현 시점과 제품의 부품 시험을 통한 개발 과 정은 현실적인 한계에 부딪히고 있다. 이러한 문제점을 해결하기 위해 지금 까지는 가 속수명시험(Accelerated Life Test)법을 개발·적용해 왔다. 그러나 제품의 사용조건이 가혹해 짐으로써 온도를 이용한 가속시험을 적용하기에는 한계가 있다. HALT는 급격한 온도변화와 6축 진동을 시료에 전달할 수 있는 장비로써 위의 조 건을 충족시킬 수 있다.[5] 그러므로 본 연구에서는 부품과 재료의 신뢰도 정보를 신속 하게 얻을 수 있는 HALT의 국내외 연구 동향과 적용 현황을 비교 분석 뿐만 아니라 HALT와 HASS의 효과적인 활용방안을 모색하고자 한다.[2]
        4,500원
        15.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many automotive components for power generation such as motors and alternators have been widely using ferrite magnets. To ensure a high level of efficiency could be achieved in an alternator, the assembled magnets must be in good enough durability. Recently, some hairline cracks have been found on the magnet produced by manufacturers in Korea. Thus, there is an increasing concern that some of the magnets produced could cause further problems after being assembled in the alternator. Based on the standard alternator test (RS0008 : 2006), this paper has developed an accelerated failure-free test for magnets in alternator to demonstrate that assembled magnets will meet durability objective specified by the manufacturer. This guarantees the target life of the magnet with 90 percent reliability and 90 percent confidence level (R90C90). Temperature and rotation speed were selected as accelerated stress factors.
        4,000원
        16.
        2013.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As information-oriented industry has been developed and electronic devices has come to be smaller, lighter, multifunctional, and high speed, the components used to the devices need to be much high density and should have find pattern due to high integration. Also, diverse reliability problems happen as user environment is getting harsher. For this reasons, establishing and securing products and components reliability comes to key factor in company's competitiveness. It makes accelerated test important to check product reliability in fast way. Out of fine pattern failure modes, failure of Electrochemical Migration(ECM) is kind of degradation of insulation resistance by electro-chemical reaction, which it comes to be accelerated by biased voltage in high temperature and high humidity environment. In this thesis, the accelerated life test for failure caused by ECM on fine pattern substrate, 20/20μm pattern width/space applied by Semi Additive Process, was performed, and through this test, the investigation of failure mechanism and the life-time prediction evaluation under actual user environment was implemented. The result of accelerated test has been compared and estimated with life distribution and life stress relatively by using Minitab software and its acceleration rate was also tested. Through estimated weibull distribution, B10 life has been estimated under 95% confidence level of failure data happened in each test conditions. And the life in actual usage environment has been predicted by using generalized Eyring model considering temperature and humidity by developing Arrhenius reaction rate theory, and acceleration factors by test conditions have been calculated.
        4,300원
        17.
        2011.05 구독 인증기관 무료, 개인회원 유료
        Light emitting diode(LED) plays important role in illumination applications such as general lighting, automotive, and outdoor lights due to their high reliability and energy saving elements. The long lifetime is one of the main advantages of LED and thus, the Accelerated Life T(ALT) is used to help achieving the target life time. This paper presents the investigation of ALT models and failures for LED in recent literatures. LED reliability improvement technologies will be discussed finally.
        4,000원
        18.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Organic light emitting diode(OLED) has been developed fast from 1963 when electric light emitting phenomenon was discovered. PMOLED(passive matrix OLED) is producted earlier than AMOLED(active matrix OLED). PMOLED is mainly mounted at sub display, but AMOLED is mounted at main display. Nowadays AMOLED is expanded to PMP(portable multimedia players), navigation and TV market. Even thought OLED's market is opening to many applications, OLED's life is worried until now. If we know about OLED's real life, we need time to test so much time over 20,000hrs. Realistically, there is difficult to test such as long time with products from the information-technology sector having a short life cycle. In this paper, we study about OLED's accelerated test to reduce life test by current. We can design OLED's accelerated life model by the result of test. The model consists of design variables like ratio of light emitting, organic material structure, condition of aging, etc. In conclusion, this model can be applied to study about organic material, machine and manufacturing process etc, and also it's possible to develop a method of manufacturing process & materials, so we need to study on the subject of this paper continuously.
        4,000원
        19.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        There has been much research on the reliability and durability of the product life cycle using accelerated life test(ALT), accelerated stress test(AST) and accelerated stress audit(ASA) in the industry. Most of these systems use vibration induced by acceleration and deceleration. The device used for these kinds of research should have wide-band exciting frequency ranges to find the weak mode of the product. In this paper, platform of ALT based on the Stewart platform is controlled by using pneumatic actuators. Pneumatic actuators use motion and impact in this paper to cause wide-band exciting frequency. The change in frequency and pressure in the six cylinders is used to control the level of exciting vibration. Many control strategies are tested to improve the performance and one of the best control algorithms is suggested.
        4,000원
        20.
        2008.11 구독 인증기관 무료, 개인회원 유료
        This paper presents the log likelihood function for integrated models for ALT such as exponential-general Eyring, Weibull-temperature and specific heat, lognormal-temperature and specific heat. Additionally this paper estimates the system reliability and mean time to failure(MTTF) for series, parallel, k of n, and standby system using ALT linkage parameter. Lastly this study designs three variable reliability acceptance sampling(RAS) plans such as type I, II censored test, sequential test by the use of integrated models for ALT.
        4,000원
        1 2