선박용 프로펠러는 선박 추진 성능과 연비에 직접적인 영향을 미치는 핵심 부품으로, 제작 과정에서 높은 정밀도가 요구된다. 사형주조는 복잡한 형상의 금속 부품 제작에 널리 사용되는 공정이지만, 주조 과정에서 발생하는 열적 팽창과 냉각 수축은 최종 치수 오 차와 가공 비용 증가를 초래하는 주요 원인이다. 본 연구에서는 사형주조 과정에서 발생하는 열팽창 및 수축 현상을 정밀하게 예측하고, 이를 고려한 최적의 치수 여유 설정을 통해 연마 작업을 최소화하는 설계 방안을 제안하였다. 알루미늄 청동 합금(ALBC3)을 사용한 프로 펠러를 대상으로 열팽창 공식과 유한요소해석(FEM)을 적용하여 블레이드, 허브, 전체 지름 등 각 부위별 변형을 정량적으로 분석하였다. 분석 결과, 블레이드 너비와 두께는 약 1.9%, 허브 직경은 1.5%, 전체 지름은 2.0%의 여유를 두는 것이 적절한 것으로 나타났다. 이러한 최 적 치수 여유를 적용한 결과, 최대 23kg의 재료 절감, 30만 원 이상의 제작 비용 절감, 작업 시간 50~60% 단축 등의 정량적 개선 효과가 확인되었다. 최적 설계를 적용함으로써 추가 연마 작업과 재료 손실을 줄일 수 있으며, 이에 따른 비용 절감 효과도 기대된다. 본 연구 결 과는 선박용 프로펠러 제작 과정의 품질 향상과 생산성 제고에 기여할 수 있을 것으로 판단된다.
본 연구는 손 재활을 위한 탐색적 고찰의 일환으로, 자수 기반 스트레인 센서를 단층과 복층 구조로 설계하여 각 구조에서의 접촉 면적 변화와 센싱 성능의 차이를 비교⋅분석함으로써 손가락 동작 센싱에 적합한 센서 구조 설계 방향을 제시하고자 하였다. 1차 실험에서는 다양한 스티치 밀도와 층 구성으로 제작된 센서를 3D 프린팅 관절 모형 에 올린 후 1 Hz 주기의 신전–이완 동작을 반복 적용하여, 생성된 신호의 peak-to-peak 전압(mVp-p)을 측정하였다. 수집된 신호는 형상 분석과 비모수 통계 검정을 통해 정량적으로 분석하였다. 2차 실험에서는 1차 실험 결과를 바탕 으로 복층 구조 센서를 선정하고, 접촉 점 수와 스티치 밀도를 기준으로 네 가지 조합의 센서를 장갑 형태로 제작하 였다. 그리고 스마트 장갑을 착용한 피험자의 엄지와 검지에 대해 굽힘–폄 동작을 기준으로, 센싱 신호의 안정성과 품질을 형상적 특성과 정량 지표를 통해 분석하였다. 실험 결과, 1차에서는 복층-고밀도 구조 센서가 단층-저밀도 구조에 비해 유의하게 높은 신호 크기를 나타냈다. 2차 실험에서도 복층-고밀도 구조가 상대적으로 더 우수한 신호 품질을 보이는 것으로 확인되었다. 결론적으로, 1차 실험에서는 센서의 구조적 설계가 신호 세기에 직접적인 영향을 미친다는 점을 입증하였고, 2차 실험에서는 실제 사용 환경에서도 자수 구조적 변수에 따라 신호 품질이 달라짐을 확인하였다. 이는 자수형 센서 설계 시 구조적 설계 의 중요성을 시사하며, 웨어러블 손 재활 장치 개발에 기초 자료로 활용될 수 있을 것이다.
During the reign of King Sejong in the Joseon Dynasty (1433-1438), the Daegyupyo (large gnomon) was produced. The Daegyupyo, with a crossbar (horizontal bar), was used to observe the length of the gnomon’s shadow cast by the sun passing at the meridian. The shadow of this crossbar can be obtained using a measurable device called the Yeongbu (shadow definer). These Daegyupyo and Yeongbu are described in detail in the “Treatise on Astronomy” of Yuan History or “Celestial Spheres and Globes” of Jega-Yeoksang-Jjp (Collected Discourses on the Astronomy and Calendrical Science of the Chinese Masters). According to Jega-Yeoksang-Jjp, the Yeongbu had a structure similar to a door attached to its frame. A pinhole is located in the center of a copper leaf corresponding to the door of the Yeongbu. The image of the sun’s meridian transit and the shadow of the crossbar through the pinhole are projected onto the surface of the Daegyupyo’s ruler stone. Unlike the width and length of the Yeongbu, the height of the Yeongbu is not recorded. This research analyzed the height of the Yeongbu required to maintain the constant distance from the pinhole to the ruler stone surface. Based on these assumptions, it was estimated that 8 to 13 Yeongbu of different heights would be needed for observations using the Daegyupyo in Seoul. To accommodate the need for Yeongbu of various heights, this study proposed a model for a stackable Yeongbu with an adjustable height.
Automated structural design methods for reinforced concrete (RC) beam members have been widely studied with various techniques to date. Recently, artificial intelligence has been actively applied to various engineering fields. In this study, machine learning (ML) is adopted to make automated structural design model for RC beam members. Among various machine learning methods, a supervised learning was selected. When a supervised learning is applied to development of ML-based prediction model, datasets for training and test are required. Therefore, the datasets for rectangular and t-shaped RC beams was constructed by commercial structural design software of MIDAS. Five supervised learning algorithms, such as Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost) were used to develop the automated structural design model. Design moment (Mu), design shear force (Vu), beam length, uniform load (wu) were used for inputs of structural design model. Width and height of the designed section, diameter of top and bottom bars, number of top and bottom bars, diameter of stirrup bar were selected for outputs of structural design model. Performance evaluation of the developed structural design models was conducted using metrics sush as root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), and coefficient of determination (R2). This study presented that random forest provides the best structural design results for both rectangular and t-shaped RC beams.
The rotary type dust remover is a device in which the rake assembly filters and processes clumps in the water while rotating and repeating movements along the track. It is installed in the pump suction part of the drainage pump station and the rainwater pump station to protect the pump to ensure smooth drainage. Since the rake assembly plays a key role in filtering out complications while passing through the water, stainless steel is applied to all components constituting it, and damage or failure due to deformation causes a crisis in case of heavy rain. This is because the existing rake assembly is excellent in rigidity, but all components are assembled by welding, which takes a lot of time for repair and replacement. In this study, shape design for rakes and assemblies of the rotary type dust remover, structural analysis to secure reliability, and demonstration tests were conducted through prototype production. Through this, it is intended to help prevent the stiffness of the joint of the rotary type dust remover from deteriorating, reduce time and cost, and efficient operation.
In this paper, the design feasibility of the high-temperature rotation test jig for the operating state of gas turbine blades was confirmed through thermal structural analysis and modal analysis. The structural analysis model was composed of assembled blade, disc, cover, and shaft. Here, the disc was designed to be assembled with two types of blade. First, thermal analysis was performed by applying the blade surface temperature of 800°C. Next, structural analysis was performed at 3600 RPM, the normal operating condition, and 4320 RPM, the overspeed operation condition. Lastly, modal analysis was performed to examine the natural frequency and deformation of the jig. The FE analysis showed that the temperature decreased from the blade to disc dovetail. Additionally, both the blade and disc showed structural stability as the maximum stress was below the yield strength. Also, the first natural frequency was 636.35Hz and 639.43Hz at 3600RPM and 4320RPM, respectively, satisfying gas turbine design standards and guidelines. Ultimately, the designed test jig was confirmed to be capable of high temperature and rotation testing of various blades.
본 논문에서는 최근 제안된 신뢰성 기반 리질리언스 평가 기법을 기반으로 지역 별 지진 특성이 구조물의 리질리언스 성능에 미치 는 영향을 정량정으로 평가하였다. 이를 위해 한국 경주와 캐나다 밴쿠버를 대상 지역으로 선정하여 동일 구조물에 대한 리질리언스 해석을 수행하였다. 각 지역에 해당하는 설계 응답 스펙트럼곡선을 바탕으로 그에 상응하는 지진동을 생성하였고, 6층 철골 구조물 을 대상 구조물로 선정하여 해석을 수행하였다. 신뢰성 및 여용성 지수 산정 시 층간 변위의 한계상태 초과 사건을 구성요소의 파괴사 건으로, 최상단 변위의 한계상태 초과 사건을 시스템 단위의 파괴로 정의하였다. 고전 취약도 해석과 유사한 증분동적해석을 수행하 여 신뢰성과 여용성을 평가하였고, 계산 결과, 두 지역의 리질리언스에 유의미한 차이가 있음을 확인하였다. 특히 장주기 증폭이 예 상되는 밴쿠버 지역의 경우 경주에 비해 구조물의 여용성이 크게 감소하는 것을 확인하였다.
This study investigates the structural stability of a telescopic arm designed for a painting robot through finite element analysis (FEA). As factory automation progresses, robots are increasingly used to replace hazardous tasks like painting. However, the heavy weight of telescopic arms poses significant control challenges. This research specifically examines the structural stability of a 7.4-meter telescopic arm, designed for use in a 14m x 14m large-scale block painting environment. The telescopic arm consists of six steel links, each ranging from 700 mm to 1500 mm, and supports a 50 kg painting robot mounted at the end of Link 6. Using Dassault System’s Abaqus2022 software, simulations were performed in both stretched and rotated modes to analyze self-weight effects and structural stability. The results revealed maximum deflection of 92.3 mm in stretched mode and 127.3 mm in rotated mode, with the highest stress concentration of 416.8 MPa occurring at the Link 3 and Link 4 connection. To improve stability, additional reinforcement materials and an increase in connector thickness from 40 mm to 80 mm were applied, successfully reducing maximum stress to 94.3 MPa. These findings suggest an effective enhancement in the stability of the telescopic arm under various operational modes.
This research introduces a novel probabilistic approach to consider the effects of uncertainty parameters during the design and construction process, providing a fresh perspective on the evaluation of the structural performance of reinforced concrete structures. The study, which categorized various random design and construction process variables into three groups, selected a two-story reinforced concrete frame as a prototype and evaluated it using a nonlinear analytical model. The effects of the uncertainty propagations to seismic responses of the prototype RC frame were probabilistically evaluated using non-linear dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. The derivation of seismic fragility curves of the RC frame from the probabilistic distributions as the results of uncertainty-propagation and the verification of whether the RC frame can meet the seismic performance objective from a probabilistic point of view represent a novel and significant contribution to the field of structural engineering.
This study was conducted to investigate the proper design of alpha board used to support concrete blocks under high loads. A board height of 50 mm was appropriate to ensure a deflection of 3 mm or less under a load of 5 tons. The trapezoidal shape of the vibration absorbers in the interior of the board reduced the maximum deflection by evenly distributing the deflection across the board width. The height of the board is the most important variable in preventing deflection, and for the same board height, adjusting the thickness of the top and bottom plates was more effective in reducing the amount of deflection than adjusting the thickness of the stiffener. The theoretical solution is a good tool for easily predicting the deflection of the board, as it shows a difference of 5 to 15% from the simulation results. However, as a 2D prediction model, the theoretical solution cannot represent the distribution of deflection over the entire board area, so the 3D simulations are necessary in predicting the amount of deflection over the entire board.
The recent surge in energy consumption has sharply increased the use of fossil fuels, leading to a steep rise in the concentration of greenhouse gases in the atmosphere. Interest in hydrogen is growing to mitigate the issue of global warming. Currently, hydrogen energy is transported in the form of high-pressure gaseous hydrogen, which has the disadvantages of low safety and energy efficiency. To develop commercial hydrogen vehicles, liquid hydrogen should be utilized. Liquid hydrogen storage tanks have supports between the inner and outer cylinders to bear the weight of the cylinders and the liquid hydrogen. However, research on the design to improve the structural safety of these supports is still insufficient. In this study, through a thermal-structural coupled analysis of liquid hydrogen storage tanks, the model with three supports, which had the lowest maximum effective stress in the outer tank, inner tank, and supports as proposed in the author's previous research, was used to create analysis models based on the diameter of the supports. A structurally safe design for the supports was proposed.
In this study, the design of fuel tank for SUVs (sports utility vehicles) was addressed through structural FE-simulation. For safety evaluation, we performed a shape analysis of fuel tank, discovered improvement measures for weak areas, and reflected them in the fuel tank design. Additionally, a strength analysis was conducted and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to propose an appropriate fuel tank shape. Additionally, the effect of changes in the shape of the reinforcement and mounting bracket on the stiffness and strength of the fuel tank bracket was investigated.
In this study, the design of parking brake mounting bracket for SUVs (sports utility vehicles) was handled through structural analysis. For safety evaluation, we conducted a shape analysis of parking brake mounting bracket, discovered improvement measures for weak areas, and reflected them in the design. In addition, a strength analysis was performed and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to suggest an appropriate parking brake mounting bracket shape. In addition, the effect of changes in the shape of the reinforcement and mounting bracket on the stiffness and strength of the parking brake mounting bracket was investigated.
The design variables and material properties as well as the external loads concerned with structural engineering are used to be deterministic in optimization process. These values, however, have variability from expected performance. Therefore, deterministic optimum designs that are obtained without taking these uncertainty into account could lead to unreliable designs, which necessitates the Reliability-Based Design Optimization(RBDO). RBDO involves an evaluation of probabilistic constraints which constitutes another optimization procedure. So, an expensive computational cost is required. Therefore, how to decrease the computational cost has been an important challenge in the RBDO research field. Approximation models, response surface model and Kriging model, are employed to improve an efficiency of the RBDO.
본 논문에서는 상용 프로그램 MIDAS GEN을 활용하여 플랜트 시설물의 특성을 반영한 골조와 단일 부재의 비선형 동적 해석을 수 행하였으며 이에 따른 결과를 분석하였다. 플랜트에 배치되는 일반적인 구조 부재의 크기와 재료적 특성을 고려하였으며, 수치해석 방법 중 뉴마크 평균 가속도법, 재료 비선형을 고려하기 위한 소성 힌지를 적용하였다. 플랜트 폭발의 대표적 유형인 증기운 폭발의 폭 발하중을 산정하였으며, 이를 골조 및 단일 부재에 적용하여 비선형 동적 해석을 수행하였다. 동적 거동의 결과는 고유주기와 하중지 속시간의 비율, 최대변위, 연성도, 회전각으로 정리하였으며 골조를 단일 부재로 해석할 수 있는 조건과 범위를 분석 및 확인하였다. 보-기둥 강성비가 0.5, 연성도가 2.0 이상인 NSFF는 FFC로 단순화할 수 있으며, 보-기둥 강성비가 0.5, 연성도가 1.5 이상인 NSPF는 FPC로 단순화하여 해석할 수 있다. 본 연구의 결과는 플랜트 시설물의 내폭설계 가이드라인으로 활용될 수 있다.
송전철탑의 심형기초 시공 시 안전확보가 매우 중요한데, 무거운 철근을 취급하는 작업자의 중대 재 해 위험이 크고 실제로 심형기초를 위한 철근공 작업자들의 사고가 끊이질 않는 실정이다. GFRP는 철근 이상의 인장강도를 갖도록 제작이 가능하고, 철근에 비해 무게가 가벼워 취급이 용이하며 시공 편이성이 높다는 장점이 있다. 따라서 본 연구에서는 철근을 대체하여 GFRP를 보강근으로 활용한 심 형 기초의 구조설계에 대해 다루었다. 국내 송전철탑 설계기준(가공송전선용 철탑기초 설계기준, DS-1110, 한국전력) 및 ACI440.1R-06 설계기준을 참고하여 GFRP 보강근이 적용된 심형 기초의 구 조검토를 수행하여 GFRP 보강근의 적용성을 검토하였다. 송전철탑의 심형 기초 단면에는 휨모멘트와 축력이 동시에 작용하며 심형기초의 주체부 및 구체부 특성에 따라 축력에 의한 편심모멘트가 추가로 작용한다. 이에 따라 설계 검토는 휨 및 축력이 동시에 작용하는 경우에 대해 수행되었다. 국내 기준 (DS-1110)의 구조검토는 허용응력설계법의 형식을 취하므로 축력과 휨모멘트에 의한 최대응력을 산 정하여 허용응력과 비교하였고, 강도설계법을 통한 구조검토는 보강된 단면의 P-M 상관도를 작도하 여 휨모멘트 및 축력이 동시에 작용하는 경우 구조 안전성 확보 유무를 판단하여 GFRP 보강재를 배 근한 단면의 설계적정성을 판단하였다.