검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 170

        1.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research introduces a novel probabilistic approach to consider the effects of uncertainty parameters during the design and construction process, providing a fresh perspective on the evaluation of the structural performance of reinforced concrete structures. The study, which categorized various random design and construction process variables into three groups, selected a two-story reinforced concrete frame as a prototype and evaluated it using a nonlinear analytical model. The effects of the uncertainty propagations to seismic responses of the prototype RC frame were probabilistically evaluated using non-linear dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. The derivation of seismic fragility curves of the RC frame from the probabilistic distributions as the results of uncertainty-propagation and the verification of whether the RC frame can meet the seismic performance objective from a probabilistic point of view represent a novel and significant contribution to the field of structural engineering.
        4,000원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to investigate the proper design of alpha board used to support concrete blocks under high loads. A board height of 50 mm was appropriate to ensure a deflection of 3 mm or less under a load of 5 tons. The trapezoidal shape of the vibration absorbers in the interior of the board reduced the maximum deflection by evenly distributing the deflection across the board width. The height of the board is the most important variable in preventing deflection, and for the same board height, adjusting the thickness of the top and bottom plates was more effective in reducing the amount of deflection than adjusting the thickness of the stiffener. The theoretical solution is a good tool for easily predicting the deflection of the board, as it shows a difference of 5 to 15% from the simulation results. However, as a 2D prediction model, the theoretical solution cannot represent the distribution of deflection over the entire board area, so the 3D simulations are necessary in predicting the amount of deflection over the entire board.
        4,000원
        3.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The recent surge in energy consumption has sharply increased the use of fossil fuels, leading to a steep rise in the concentration of greenhouse gases in the atmosphere. Interest in hydrogen is growing to mitigate the issue of global warming. Currently, hydrogen energy is transported in the form of high-pressure gaseous hydrogen, which has the disadvantages of low safety and energy efficiency. To develop commercial hydrogen vehicles, liquid hydrogen should be utilized. Liquid hydrogen storage tanks have supports between the inner and outer cylinders to bear the weight of the cylinders and the liquid hydrogen. However, research on the design to improve the structural safety of these supports is still insufficient. In this study, through a thermal-structural coupled analysis of liquid hydrogen storage tanks, the model with three supports, which had the lowest maximum effective stress in the outer tank, inner tank, and supports as proposed in the author's previous research, was used to create analysis models based on the diameter of the supports. A structurally safe design for the supports was proposed.
        4,000원
        4.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Because most spent nuclear fuel storage casks have been designed for low burnup fuel, a safety-significant high burnup dry storage cask must be developed for nuclear facilities in Korea to store the increasing high burnup and damaged fuels. More than 20% of fuels generated by PWRs comprise high burnup fuels. This study conducted a structural safety evaluation of the preliminary designs for a high burnup storage cask with 21 spent nuclear fuels and evaluated feasible loading conditions under normal, off-normal, and accident conditions. Two types of metal and concrete storage casks were used in the evaluation. Structural integrity was assessed by comparing load combinations and stress intensity limits under each condition. Evaluation results showed that the storage cask had secured structural integrity as it satisfied the stress intensity limit under normal, off-normal, and accident conditions. These results can be used as baseline data for the detailed design of high burnup storage casks.
        4,000원
        5.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the design of fuel tank for SUVs (sports utility vehicles) was addressed through structural FE-simulation. For safety evaluation, we performed a shape analysis of fuel tank, discovered improvement measures for weak areas, and reflected them in the fuel tank design. Additionally, a strength analysis was conducted and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to propose an appropriate fuel tank shape. Additionally, the effect of changes in the shape of the reinforcement and mounting bracket on the stiffness and strength of the fuel tank bracket was investigated.
        4,000원
        6.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the design of parking brake mounting bracket for SUVs (sports utility vehicles) was handled through structural analysis. For safety evaluation, we conducted a shape analysis of parking brake mounting bracket, discovered improvement measures for weak areas, and reflected them in the design. In addition, a strength analysis was performed and the analysis results were reflected in the design. As a result of analysis through various design changes, it was possible to suggest an appropriate parking brake mounting bracket shape. In addition, the effect of changes in the shape of the reinforcement and mounting bracket on the stiffness and strength of the parking brake mounting bracket was investigated.
        4,000원
        7.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The design variables and material properties as well as the external loads concerned with structural engineering are used to be deterministic in optimization process. These values, however, have variability from expected performance. Therefore, deterministic optimum designs that are obtained without taking these uncertainty into account could lead to unreliable designs, which necessitates the Reliability-Based Design Optimization(RBDO). RBDO involves an evaluation of probabilistic constraints which constitutes another optimization procedure. So, an expensive computational cost is required. Therefore, how to decrease the computational cost has been an important challenge in the RBDO research field. Approximation models, response surface model and Kriging model, are employed to improve an efficiency of the RBDO.
        4,000원
        9.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 상용 프로그램 MIDAS GEN을 활용하여 플랜트 시설물의 특성을 반영한 골조와 단일 부재의 비선형 동적 해석을 수 행하였으며 이에 따른 결과를 분석하였다. 플랜트에 배치되는 일반적인 구조 부재의 크기와 재료적 특성을 고려하였으며, 수치해석 방법 중 뉴마크 평균 가속도법, 재료 비선형을 고려하기 위한 소성 힌지를 적용하였다. 플랜트 폭발의 대표적 유형인 증기운 폭발의 폭 발하중을 산정하였으며, 이를 골조 및 단일 부재에 적용하여 비선형 동적 해석을 수행하였다. 동적 거동의 결과는 고유주기와 하중지 속시간의 비율, 최대변위, 연성도, 회전각으로 정리하였으며 골조를 단일 부재로 해석할 수 있는 조건과 범위를 분석 및 확인하였다. 보-기둥 강성비가 0.5, 연성도가 2.0 이상인 NSFF는 FFC로 단순화할 수 있으며, 보-기둥 강성비가 0.5, 연성도가 1.5 이상인 NSPF는 FPC로 단순화하여 해석할 수 있다. 본 연구의 결과는 플랜트 시설물의 내폭설계 가이드라인으로 활용될 수 있다.
        4,000원
        10.
        2024.04 구독 인증기관·개인회원 무료
        송전철탑의 심형기초 시공 시 안전확보가 매우 중요한데, 무거운 철근을 취급하는 작업자의 중대 재 해 위험이 크고 실제로 심형기초를 위한 철근공 작업자들의 사고가 끊이질 않는 실정이다. GFRP는 철근 이상의 인장강도를 갖도록 제작이 가능하고, 철근에 비해 무게가 가벼워 취급이 용이하며 시공 편이성이 높다는 장점이 있다. 따라서 본 연구에서는 철근을 대체하여 GFRP를 보강근으로 활용한 심 형 기초의 구조설계에 대해 다루었다. 국내 송전철탑 설계기준(가공송전선용 철탑기초 설계기준, DS-1110, 한국전력) 및 ACI440.1R-06 설계기준을 참고하여 GFRP 보강근이 적용된 심형 기초의 구 조검토를 수행하여 GFRP 보강근의 적용성을 검토하였다. 송전철탑의 심형 기초 단면에는 휨모멘트와 축력이 동시에 작용하며 심형기초의 주체부 및 구체부 특성에 따라 축력에 의한 편심모멘트가 추가로 작용한다. 이에 따라 설계 검토는 휨 및 축력이 동시에 작용하는 경우에 대해 수행되었다. 국내 기준 (DS-1110)의 구조검토는 허용응력설계법의 형식을 취하므로 축력과 휨모멘트에 의한 최대응력을 산 정하여 허용응력과 비교하였고, 강도설계법을 통한 구조검토는 보강된 단면의 P-M 상관도를 작도하 여 휨모멘트 및 축력이 동시에 작용하는 경우 구조 안전성 확보 유무를 판단하여 GFRP 보강재를 배 근한 단면의 설계적정성을 판단하였다.
        11.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a safety device, a rupture disc are used to control pressure to minimize the explosion risk once the internal pressure of high pressure equipment exceeds a critical level. In this paper, optimization method was developed to secure optimal design of domed Rupture disks. The parameter analysis was performed through design of experiment to parameter of Rupture disk made of AISI 316.The Diameter, Thickness and Hight of Rupture disk were selected as design parameters for design parameter analysis. The results of parameter analysis revealed that the Diameter, thickness and hight were burst pressure-sensitive design parameters. Based on the valid performance factors, a regression equation to predict its performance was deducted and using the equation, an optimal design. And a sample model was fabricated, followed by burst pressure testing, after optimal design and analytical verification. In this research, it is verified that the optimal design method and the credibility of the analysis of this study is deemed very high. Furthermore, utilizing this mechanism would inspect the effect of the design parameter performance and increase the credibility and efficiency of a design.
        4,000원
        12.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Engineering design involves making numerous decisions as the design process. These decisions can be broadly categorized into selection decisions and compromise decisions. The outcomes of these decisions heavily depend on the designer's intentions, highlighting the need to systematically and accurately incorporate the designer's intentions. The Analytic Hierarchy Process (AHP) is a design technique that systematically reflects the designer's intentions by hierarchically analyzing and evaluating ambiguous decision problems. Therefore, in this study, effective optimal structure designs that maximally reflect the designer's intentions were confirmed by introducing AHP (Analytic Hierarchy Process) and Neural Network into the foundational decision-making process of engineering design.
        4,000원
        13.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to ensure the structural integrity of a canister to be used in a dry storage system currently being developed in Korea. Based on burnup and cooling periods, the canister is designed with 24 bundles of spent nuclear fuel stored inside it. It is a cylindrical structure with a height of 4,890 mm, an internal diameter of 1,708 mm, and an inner length of 4,590 mm. The canister lid is fixed with multiple seals and welds to maintain its confinement boundary to prevent the leakage of radioactive waste. The canister is evaluated under different loads that may be generated under normal, off-normal, and accident conditions, and combinations of these loads are compared against the allowable stress thresholds to assess its structural integrity in accordance with NUREG-2215. The evaluation result shows that the stress intensities applied on the canister under normal, off-normal, and accident conditions are below the allowable stress thresholds, thus confirming its structural integrity.
        4,300원
        14.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A transfer cask serves as the container for transporting and handling canisters loaded with spent nuclear fuels from light water reactors. This study focuses on a cylindrical transfer cask, standing at 5,300 mm with an external diameter of 2,170 mm, featuring impact limiters on the top and bottom sides. The base of the cask body has an openable/closable lid for loading canisters with storage modules. The transfer cask houses a canister containing spent nuclear fuels from lightweight reactors, serving as the confinement boundary while the cask itself lacks the confinement structure. The objective of this study was to conduct a structural analysis evaluation of the transfer cask, currently under development in Korea, ensuring its safety. This evaluation encompasses analyses of loads under normal, off-normal, and accident conditions, adhering to NUREG-2215. Structural integrity was assessed by comparing combined results for each load against stress limits. The results confirm that the transfer cask meets stress limits across normal, off-normal, and accident conditions, establishing its structural safety.
        4,600원
        15.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        OWEC(Overtopping Wave Energy Converter)는 월파된 파도를 이용한 파력발전시스템이라한다. OWEC의 성능 및 안전성은 파고, 주기 등 파도의 특성에 의해 영향을 받는다. 따라서 해역 특성에 따른 OWEC의 최적 형상과 구조안전성에 관한 연구가 필요하다. 본 연구 에서는 울릉읍 연안 해양 환경 데이터를 이용하였으며, SPH(Smoothed Particle Hydrodynamics) 입자법 해석을 통해 기존 케이슨 하부 구조에 변화를 준 모델 4개를 비교하여 월파 효율을 분석하였다. 그 결과, 하부 구조의 변경 및 경량화가 가능함을 확인하였다. 최적화 해석을 통 해 설계 하중에 내하력을 가지는 하부 구조인 새로운 트러스형 구조를 제안하였다. 이후 부재 직경 및 두께를 설계변수로 하는 사례 연구 를 통해 허용응력조건 하에서 구조 안전성의 확보를 확인하였다. 주기적인 파랑 하중을 받기 때문에 제안하는 구조의 고유 진동수와 해 당 해역의 파주기를 비교하였으며, 1년 재현 주기의 파랑을 하중으로 한 조화응답해석을 수행하였다. 제안하는 하부 구조는 동일 가진력 에서 기존 설계 대비 응답의 크기가 감소하였으며, 기존 대비 32% 이상의 중량 절감을 수행하였다.
        4,000원
        16.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a prefabricated buckling brace (PF-BRB) was proposed, and a test specimen was manufactured based on the design formula for the initial shape and structural performance tests were performed. As a result of the experiment, all standard performance requirements presented by KDS 41 17 00 and MOE 2021 were satisfied before and after replacement of the reinforcement module, and no fracture of the joint module occurred. As a result of the incremental load test, the physical properties showed a significant difference in the stiffness ratio after yielding under the compressive load of the envelope according to the experimental results. It is judged necessary to further analyze the physical properties according to the experimental results through finite element analysis in the future.
        4,000원
        17.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the advancement of optical design and manufacturing technology, optical components have found diverse applications, spanning from semiconductors to the aerospace industry. A reflective mirror is a basic component in optics and plays a crucial role as the medium to reflect light. In this paper, a large mirror with a 700mm diameter was designed as a primary mirror using fused silica. The rear side of the mirror was subdivided into several equal angles, and neighboring vertices on the circumference were connected to establish a polygon. Accordingly, the geometric shapes of triangle, square, pentagon, and hexagon were formed. Furthermore, the mirror structure was strengthened by employing straight lines passing the vertices and the center of the circle. Based on the finite element analysis, deformations of the mirrors caused by the gravitational force were evaluated. Weight and deformation of the mirror structures were compared and analyzed to find a proper structure to reduce weight and deformation. This paper, therefore, presents a structural solution aimed at reducing the weight and deformation of a large aperture mirror induced by gravitational forces, thereby suggesting a geometric shape based structure to reduce surface deformation of a mirror.
        4,000원
        18.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, In this study, structural analysis of a fuel tank for an SUV (sports utility vehicle) was performed for crack prevention design. Reservoir tank analysis was conducted for crack prevention design, and improvement measures for weak areas were discovered and reflected in the design. Pressure analysis was performed on the existing model to analyze weak areas. As a result of analysis through various design changes, it was found that the strength problem of the reservoir tank was due to the discontinuity of the rib inside the tank, and to improve this, it was necessary to minimize the discontinuity section.
        4,000원
        20.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        로터 블레이드는 조류발전 터빈의 매우 중요한 구성 요소로서, 해수의 높은 밀도로 인해 큰 추력(Trust force)와 하중(Load)의 영 향을 받는다. 따라서 블레이드의 형상 및 구조 설계를 통한 성능과 복합소재를 적용한 블레이드의 구조적 안전성을 반드시 확보해야 한 다. 본 연구에서는 블레이드 설계 기법인 BEM(Blade Element Momentum) 이론을 이용해 1MW급 대형 터빈 블레이드를 설계하였으며, 터빈 블레이드의 재료는 강화섬유 중의 하나인 GFRP(Glass Fiber Reinforced Plastics)를 기본으로 CFRP(Carbon Fiber Reinforced Plastics)를 샌드위치 구조에 적용해 블레이드 단면을 적층(Lay-up)하였다. 또한 유동의 변화에 따른 구조적 안전성을 평가하기 위해 유체-구조 연성해석 (Fluid-Structure Interactive Analysis, FSI) 기법을 이용한 선형적 탄성범위 안의 정적 하중해석을 수행하였으며, 블레이드의 팁 변형량, 변형 률, 파손지수를 분석해 구조적 안전성을 평가하였다. 결과적으로, CFRP가 적용된 Model-B의 경우 팁 변형량과 블레이드의 중량을 감소시 켰으며, 파손지수 IRF(Inverse Reserce Factor)가 Model-A의 3.0*Vr를 제외한 모든 하중 영역에서 1.0 이하를 지시해 안전성을 확보할 수 있었 다. 향후 블레이드의 재료변경과 적층 패턴의 재설계뿐 아니라 다양한 파손이론을 적용해 구조건전성을 평가할 예정이다.
        4,000원
        1 2 3 4 5