Periodontitis is a chronic inflammatory condition primarily triggered by bacterial infections, with periodontopathogens such as Porphyromonas gingivalis playing a pivotal role. We evaluated the antioxidant and anti-inflammatory effects of ethanol extract of Salvia plebeia R. Br. (SP-E) on human gingival fibroblasts (hTERT-hNOF) stimulated with P. gingivalis -derived lipopolysaccharide (LPS). Dried S. plebeia was extracted using 70% ethanol, yielding a 10.5% extract. Inflammation in hTERT-hNOF cells was induced using P. gingivalis LPS in conjunction with LPS-binding protein and CD14. SP-E was administered at concentrations ranging from 25 to 100 μg/mL. Antioxidant capacity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and superoxide dismutase (SOD) activity assay. Inflammatory cytokine expression and secretion were analyzed via reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Results demonstrated a concentrationdependent antioxidant effect, with 62.98% radical scavenging activity observed at 200 μg/mL SP-E. In hTERT-hNOF cells, SOD activity increased from 4.88% (LPS-treated) to 45.78% with 100 μg/mL SP-E. RT-PCR analysis showed significant downregulation of interleukin (IL)-1β, IL-6, and IL-8 mRNA expression following SP-E treatment. ELISA confirmed a reduction in tumor necrosis factor (TNF)-α (312.83 → 178.22 pg/mL), IL-6 (453.97 → 170.83 pg/mL), and IL-8 (480.14 → 276.86 pg/mL) levels with 100 μg/mL SP-E. These findings suggest that SP-E may offer therapeutic potential for preventing and managing periodontal disease by mitigating oxidative stress and modulating inflammatory cytokine expression. Further studies are warranted to elucidate the underlying molecular mechanisms and validate these effects in vivo .
To inhibit peroxidation of refrigerated eel, ethanol extracts of ginger and turmeric (30° Soju) were employed as a pre-treatment. The DPPH and ABTS scavenging activities of ginger and turmeric extracts were observed to be significantly higher than that of 5 mM vitamin C (p<0.05). Following the application of ginger or turmeric extracts for a period of 21 days, a reduction in the acid, peroxide, carbonyl, and TBA values was noted in comparison to the untreated samples. Furthermore, no significant difference was observed between the samples containing 5 mM vitamin C and those with ginger or turmeric extract in the peroxide value and TBA measurements. With regard to the carbonyl value, the treatment involving ginger or turmeric extract demonstrated a more pronounced antioxidant effect than the treatment with 5 mM vitamin C (p<0.05). Furthermore, the application of ginger or turmeric extracts resulted in a delay in the peroxidation induction period of linoleic acid and eel oil, thereby inhibiting peroxidation. The antioxidant effects observed were comparable to those of 10 mM vitamin C. In conclusion, the findings of this study indicate that pre-treatment of eels with ginger or turmeric ethanol (30° Soju) extracts effectively inhibits peroxidation during refrigerated storage.
This study investigated the physiological activities of a 70% ethanol extract of jicama by measuring its polyphenol and flavonoid contents, as well as its DPPH and ABTS radical scavenging activities, and α-amylase and α-glucosidase inhibition activities. The polyphenol and flavonoid contents of the extract were found to be 2.45 GAE/g and 3.98 CE/g, respectively. At a concentration of 5 mg/mL, the DPPH and ABTS radical scavenging activities, along with the α-amylase and α-glucosidase inhibition activities, were 52.32%, 45.60%, 47.44%, and 36.96%, respectively.
This experimental study aimed to determine the anti-obesity effects of burdock(Arctium lapp L.) extract and processed (Beopje) burdock extract in a high fat diet-induced obesity model. When burdock extract was orally administered at a concentration of 250 mg/kg BW and the Beopje burdock extract was administered at 250 and 500 mg/kg BW, they significantly decreased body weights increased by a high-fat diet, improved food efficiency ratio, decreased adipose tissue weight by site, and significantly decreased blood triglycerides, total cholesterol, and LDL-cholesterol levels. Blood ALT and AST contents as liver function-related indices increased by the high fat diet were significantly decreased by the Beopje burdock extract. Results of histological analysis of the liver showed that the Beopje burdock extract alleviated fatty liver phenomenon induced by a high-fat diet. In addition, levels of blood TNF-α, IL-6, and IL1-β increased by a high-fat diet were significantly decreased by ALB-L and ALB-H. Therefore, Beopje burdock extract can improve obesity in a high-fat diet-induced obese animal model by improving blood lipids and blood biochemical indices, increasing body water, and decreasing body fat more than the burdock extract.
Hangovers, resulting from excessive alcohol intake, manifest hours after drinking, causing symptoms like thirst, headache, and fatigue. Alcohol is metabolized in the liver by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), with acetaldehyde and reactive oxygen species contributing to toxic effects. Morning Care (MC) products were evaluated in male and female mice to assess their impact on alcohol metabolism and hangover alleviation. The study revealed that pre-administration of MC products led to a significant reduction in blood ethanol and acetaldehyde concentrations postalcohol ingestion. This remarkable finding suggests a potential breakthrough in hangover relief. Enhanced ADH and ALDH activities were observed in blood and liver samples, indicating improved alcohol metabolism. Interestingly, gene expression levels of ADH and ALDH in the liver did not show significant differences, suggesting that MC products likely enhance enzyme activities through post-translational modifications rather than altering gene expression. These findings underscore the potential of MC products to mitigate hangover symptoms by enhancing alcohol metabolism.
본 연구는 기능성 화장품 소재로서 생태교란종으로 지정되어있는 가시박 (Sicyos angulatus L., SA)의 이용 가능성을 알아보기 위하여 항산화, 미백, 항균, 항염증 효능 평가를 수행한 후, 에멀션 안정성을 확인하였다. SA는 초순수 (SAW)와 70% EtOH (SAE)로 추출하였다. SAE는 SAW와 비교하 여 DPPH radical 및 ABTS+ radical에 대한 소거 활성과 SOD 유사 활성이 보여 항산화의 효능이 뛰어 나며, tyrosinase의 활성을 저해하여 멜라닌 생성을 억제하였다. SAW는 Escherichia coli (E.c), Staphylococcus epidermidis (S.e), Staphylococcus aureus (S.a), Pseudomonas aeruginosa (P.a), Cutibacterium acnes (C.a) 균주에 대한 항균 효과가 없는 반면, SAE는 S.a를 제외한 E.c, S.e, P.a, C.a 균주에서 clear zone이 생성되어 항균 활성을 나타내었다. LPS를 처리한 RAW 264.7 세포에서 SAE는 SAW보다 iNOS 및 COX-2의 발현량이 억제됨으로써 NO의 생성량을 억제하여 항염증에 대한 효능을 나타내었다. SAE을 첨가한 에멀션을 4℃, 25℃, 50℃의 온도에서 분리 현상이 관찰되지 않고, pH와 점 도는 수치상 큰 변화가 없었으며, 입자크기가 대조군 에멀션의 입자와 유사하므로 제형에 영향을 끼치지 않음을 확인하였다. 본 연구 결과를 기반으로, 기능성 화장품 연구에 새로운 소재로서의 활용 가능성을 제시하고자 한다.
This study investigated major constituents and anti-inflammatory effects of an ethanol extract of Platycodon grandiflorum leaves. Through HPLC analysis, chlorogenic acid and luteolin-7-O-glucoside were identified as predominant constituents in the ethanol extract. Their anti-inflammatory effects were evaluated using murine macrophage (RAW 264.7 cells) and human lung carcinoma cells (NCI-H292 & A549). The ethanol extract significantly (p<0.01) inhibited the production of nitrite, interleukin-6 (IL-6), and prostaglandin E2 (PGE2) induced by lipopolysaccharide (LPS) in RAW 264.7 cells. Furthermore, the ethanol extract suppressed the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in RAW 264.7 cells stimulated with LPS. In NCI-H292 and A549 cells, treatment with the ethanol extract significantly (p<0.05) decreased levels of pro-inflammatory cytokines IL-6 and IL-8 induced by IL-1β. The phosphorylation of ERK rather than JNK in the mitogen-activated protein kinase signaling pathway was observed to be a more important mediator in the down-regulation of pro-inflammatory cytokines in NCI-H292 cells. These findings suggest that the ethanol extract of Platycodon grandiflorum leaves containing luteolin-7-O-glucoside exhibits promising anti-inflammatory properties.
본 연구는 PEBAX/PVDF 복합막을 제조하고 에탄올/물 혼합액에 대한 투과증발 성능을 평가하였다. 또한 PVDF 지지체 표면에 ZIF-8 층을 형성하여 복합막의 투과증발 성능을 향상시키고자 하였고, PEBAX 선택층 두께에 따른 성능 비교 를 통해 최적의 막을 선정하였다. 제작된 복합막을 물과 에탄올이 95/5 중량비로 혼합된 공급액에 대하여 투과증발 실험을 수행하였다. 그 결과 ZIF-8 충이 형성된 PVDF 지지체를 사용한 복합막의 경우 플럭스 1.98 kg/m2h, 분리 계수 3.88로 일반 PVDF 지지체를 사용한 복합막보다 투과량과 선택도가 모두 높은 값을 나타내었다.
Golden apple snails(GAS) are native to warm regions such as Central and South America and Southeast Asia, and were first introduced as a high-protein food. GAS are omnivorous and have a habit of eating plants submerged in water, so they have been used for eco-friendly weed control in rice fields since 1992. When the GAS was first introduced, it was thought that it would be impossible to overwinter in Korea. However after 2000, overwintering individuals were founded and damage to rice occurred and the development of means to control GAS has been required. In this study, we tested the effectiveness of an eco-friendly pest control agent using Styrax japonicus that grow naturally in Korea. As a result of exposing GAS to S. japonicus fruit powder, a 100% molluscicidal effect was confirmed at 66.7ppm. To investigate the duration of effect, treatment was performed at the same concentration and molluscicidal effect of more than 90% was up to 3 days after treatment. The killing effect of each part of the S. japonicus was compared, and the seed extracts showed no killing effect at all concentrations, while the sarcocarp extracts showed a 100% killing effect up to 33.3ppm, and the fruit extracts showed a 100% killing effect up to 200ppm.
This study investigated the anti-obesity effects of Coriandrum sativum L. ethanol extracts in a high fat diet-induced obesity model (DIO). We confirmed the anti-obesity effects by analysing the expression of the related proteins, weight gain, dietary intake, dietary efficiency, blood biochemistry, histological analysis and western blot analysis. After oral administration of Coriandrum sativum L. ethanol extracts at concentrations of 250 and 500 mg/kg, a significant improvement in dietary efficiency, reduction in weight gain, triglycerides, total cholesterol and LDL-cholesterol in blood lipid was observed for 8 weeks. In addition, improvement in blood glucose and metabolism confirmed through glucose tolerance test was observed. Further, the concentration of alanine transaminase (ALT) in blood was significantly decreased, which improved the fatty liver caused by high-fat diet intake as confirmed by liver tissue analysis. This phenomenon was confirmed to decrease the expression of fat accumulation-related PPARγ and FAS protein in the liver tissue. Especially, it is believed that FAS, a liposynthetic enzyme, has a stronger inhibitory effect than PPARγ. Therefore, Coriandrum sativum L. ethanol extract is thought to improve obesity by reducing blood lipids levels, improving glucose metabolism and inhibiting synthesis of the fat that accumulates in the liver in high-fat diet-induced obesity animal models.
‘갑주백목’ (Diospyros kaki Thunb cv. Hachiya) 감은 현재 홍시 또는 건시로만 식용되고 있는데 탈삽된 생과로서의 활용이 기대된다. CO2 및 ethanol 탈삽 처리와 동시에 1-methylcyclopropene (1-MCP)를 처리하여 탈삽과 연화억제에 대한 효과를 보고자 본 연구를 수행하였다. CO2 탈삽은 20L 아크릴 용기를 이용하여 95% CO2를 24시간, ethanol 탈삽은 PE 필름(85.0cm×63.5cm)을 이용하여 99.9% ethanol 20ml를 3일간 상온(23℃)에서 처리하였다. 1-MCP는 탈삽 처리와 동시에 1μL・L-1을 처리하였다. 탈삽 처리 후 상온 모의유통과 3주 저온저장 후 상온 모의유통의 두 가지 조건에서 과실의 품질을 조사하였다. CO2는 처리 종료 후 2일에 ethanol은 5일에 식용이 가능한 상태로 탈삽 되었으며 탈삽이 완료되지 않은 과실은 3주간의 저온 저장에서 완전히 탈삽되었다. 1-MCP는 탈삽속도에는 큰 영향을 미치지 않았으며 CO2와 ethanol 탈삽 모두에서 우수한 연화억제 효과를 나타내었다. 특히, 3주 저온 저장 후 상온 유통에서 1-MCP의 연화억제 효과는 더욱 크게 나타났다. 이상의 결과로 볼 때 1-MCP는 감의 탈삽에 있어 별도의 처리시간을 필요로 하지 않는 효과적인 연화억제 수단으로 판단되며, 이러한 ‘갑주백목’ 탈삽 생과는 향후 국내 유통 및 해외 수출이 기대된다.
To apply UV-C as a non-heating sterilization method to increase the microbiological safety of fresh seedless watermelon products, reductions in E. coli and quality changes by treatment dose (0, 2, 4, 8, 14, 20 kJ/m2) were investigated. The pH, sugar content, and hardness of watermelon inoculated with E. coli were not significantly different according to the UV-C treatment dose, but the polyphenol content was significantly decreased compared to the controls (425.4 GAE μg/g F.W.). When treated with 2 and 4 kJ/m2, the lycopene content was 31.6 and 30.9 μg/g F.W., respectively, which was increased compared to the controls (28.5 μg/g F.W.). The arginine and citrulline content was also significantly increased compared to the controls. The number of E. coli was significantly decreased compared to the controls following UV-C treatment. Considering the degree of E. coli reduction, lycopene content, arginine content, citrulline content, and UV-C irradiation time, subsequent experiments were conducted by selecting a UV-C treatment dose of 2 kJ/m2. The results of confirming the degree of reduction in the number of E. coli colonies by a single treatment and combined treatment with UV-C 2 kJ/m2 and 70% ethanol showed that the combined treatment was most effective as colonies were decreased by 2.3 log CFU/g compared to the controls. Therefore, it is judged that UV-C 2 kJ/m2 radiation and combined treatment with 70% ethanol could be applied as a non-heating sterilization method for fresh watermelon slices.