검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Oil spills into ocean or coastal waters can result in significant damage to the environment via pollution of aquatic ecosystems. Absorbents based on reduced graphene oxide (rGO) foams have the capacity to remove minor or major oil spills. However, conventional chemical synthesis of rGO often uses petrochemical precursors, potentially harmful chemicals, and requires special processing conditions that are expensive to maintain. In this work, an alternative cost-effective and environmentally friendly approach suitable for large-scale production of high-quality rGO directly from used cooking sunflower oil is discussed. Thus, produced flaky graphene structures are effective in absorbing used commercial sunflower oil and engine oil, via monolayer physisorption in the case of used sunflower and engine oils facilitated by van der Waals forces, π–π stacking and hydrophobic interactions, π-cation ( H+) stacking and radical scavenging activities. From adsorption kinetic models, first-order kinetics provides a better fit for used sunflower oil adsorption (R2 = 0.9919) and second-order kinetics provides a better fit for engine oil adsorption (R2 = 0.9823). From intra-particle diffusion model, R2 for USO is 0.9788 and EO is 0.9851, which indicates that both used sunflower and engine oils adsorption processes follow an intra-particle diffusion mechanism. This study confirms that waste-derived rGO could be used for environmental remediation.
        4,800원
        2.
        2020.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although flame synthesis promises economic benefit and rapid synthesis of carbon nanotube (CNT), the lack of control and understanding of the effects of flame parameters (e.g., temperature and precursor composition) impose some challenges in modelling and identifying CNT growth region for obtaining better throughput. The present study presents an investigation on the types of carbon precursor that affect CNT growth region on nickel catalyst particles in an ethylene inverse diffusion flame. An established CNT growth rate model that describes physical growth of CNT is utilised to predict CNT length and growth region using empirical inputs of flame temperature and species composition from the literature. Two variations of the model are employed to determine the dominant precursor for CNT growth which are the constant adsorption activation energy (CAAE) model and the varying adsorption activation energy (VAAE) model. The carbon precursors investigated include ethylene, acetylene, and carbon monoxide as base precursors and all possible combinations of the base precursors. In the CAAE model, the activation energy for adsorption of carbon precursor species on catalyst surface E a,1 is held constant whereas in the VAAE model, E a,1 is varied based on the investigated precursor. The sensitivity of the growth rate model is demonstrated by comparing the shifting of predicted growth regions between the CAAE model and the VAAE model where the CAAE model serves as a control case. Midpoint-based and threshold-based techniques are employed within each model to quantify the predicted CNT growth region. Growth region prediction based on the midpoint-VAAE approach demonstrates the importance of acetylene and carbon monoxide to some extent towards CNT growth. Ultimately, the threshold-VAAE model shows that the dominant precursor for CNT growth is the mixture of acetylene and carbon monoxide. A simplified reaction mechanism is proposed to describe the surface chemistry for precursor reactions with nickel catalyst where decomposition of the ethylene fuel source into acetylene and carbon monoxide is accounted for by chemisorption.
        4,200원
        3.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energyefficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures..
        4,000원
        4.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Melamincyanurate(MC), as an non halogen flame retardant are used as the polymer and plastic materials. In this study, melamine and cyanuric acid were used for the synthesis of MC. The optimum condition of synthetic MC were controlled by different molar ratio of melamine to cyanuric acid. MC was modified by coupling reaction with four different agents. The influences of modified MC were based on the coupling agent types. Preparation methods are available to offer the prospect of improved morphology control deposit stability in polyol. The results reveal that glycidoxypropyltrimethoxysilane(GDS) has the best storage stability. The best properties were obtained with melamine and cyanuric acid from 1:1 molar ratio. Modification of MC through coupling agent can efficiently enhanced the deposit stability in polyol up to 30 %.
        4,000원
        5.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Different types magnesium hydroxide groups have been obtained using the hydrothermal precipitation technique from magnesium sulfate and calcium carbonate solution. The Mg atom coordinated around O atom of SO42- in another layer to form a multi-layer structure crystal. The influence of synthesis parameters on the morphological characteristics and size of magnesium hydroxide groups precipitated in aqueous were investigated such as different of additive and pH. Magnesium hydroxide groups were decomposed gradually and converted finally to MgO particles after heated in air temperature up to 1050℃. The particle size and it's distribution morphology, crystal phase and thermal behavior of the samples were characterized through XRD, SEM, EDS, and TG/DTA.
        4,000원
        6.
        2008.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two component polyurethane (PU) flame retardant coatings were prepared by blending trichloro modified polyesters (TCMPs) and isophorone diisocyanate isocyanurate. TCMPs were synthesized by polycondensation of trichlorobenzoic acid (TCBA), a flame retardant component, with adipic acid, 1,4 butanediol, and trimethylolpropane. The content of TCBA was varied in 10, 20, and 30 wt% for the reaction. Theses new flame retardant coatings showed various properties comparable to other non flame retardant coatings. Moreover, we carried out the combustion test and the flammability test for our flame retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TCBA were determined as no burn. The results of flammability test for the coatings with 20 wt% and 30 wt% of TCBA contents indicated the limiting oxygen index (LOI) values of 26% and 29% respectively, which implied relatively good flame retardancy.
        4,000원
        7.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to enhance the flame retardancy by the synergism effect of phosphorus and bromine groups. The flame-retardant polyurethane coatings containing phosphorus and bromine compounds were synthesized. After synthesizing the intermediate products of tetramethylene bis(orthophosphate) (TBOP) and trimethylolpropane/2,3-dibromopropionic acid (2,3-DBP) [2,3-DBP-adduct], the condensation polymerization was performed with four different monomers of two intermediate products, 1,4-butanediol, and adipic acid to obtain four-components copolymer. In the condensation polymerization, the content of phosphorus was fixed to be 2wt%, and the content of 2,3-DBP that provides bromine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing phosphorus and bromine as DTBA-10C, -20C, -30C. Average molecular weight and polydispersity index of the preparation of DTBAs were decreased with increasing 2,3-DBP content because of increase of hydroxyl group that retards reaction. We found that the thermal stability of the prepared DTBAs increased with bromine content at high temperature.
        4,500원
        8.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Three phosphorus functional groups were introduced in one structural unit of polymer backbone to enhance the flame retardancy of PU coatings. In the first step, we synthesized tetramethylene bis(orthophosphate) (TBOP) that contained two phosphorus functional groups in one structural unit. In the next step, we synthesized modified polyesters (ATBTP-10C, -20C, -30C) that contained triphosphorus group using TBOP, 1,4-butanediol, trimethylolpropane, adipic acid, and another functional monomer, phenylphosphonic acid (PPA). The amount of PPA in ATBTPs was adjusted from 10 wt% to 30 wt%. The structure and characteristics of ATBTPs were examined using FT-IR, NMR, GPC, and TGA analysis. From the thermo-behavior test of diphosphorus modified polyester (ATBT) and ATBTPs, the afterglow of ATBT, ATBTP-10C, ATBTP-20C, and ATBTP-30C were 24.7, 27.1, 29.0, and 31.7%, respectively. It was found from this result that the afterglow increased with the amount of PPA component.
        4,000원
        9.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to obtain the maximum flame retardancy as well as the minimum deterioration of physical properties of PU flame-retardant coatings, chlorine and phosphorus functional groups were introduced into the pre-polymer of modified polyesters. In the first step, the tetramethylene bis(orthophosphate) (TBOP) and neohexanediol dichloroacetate (DCA-adduct) intermediates were synthesized. In the second step, 1,4-butanediol and adipic acid monomers were polymerized with the two kinds of intermediates to obtain copolymers. The modified polyesters containing chlorine and phosphorus (ATBA-10C, -20C, and -30C) were synthesized by adjusting that the content of phosphorus compound was fixed as 2wt% and the contents of chlorine compound (dichloroacetic acid) were varied as 10, 20, and 30wt%. Average molecular weight and polydispersity index of the preparation of ATBAs were decreased with increasing DCA content because of the increase in hydroxyl group that retards reaction.
        4,200원
        10.
        2006.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study is to synthesis basic resins for the preparation of PU flame-retardant coatings that contain phosphorus and chlorine. After synthesizing intermediates of tetramethylene bis(orthophophate) (TMBO) and neohexanediol trichlorobenzoate (TBA-adduct), the condensation polymerization was performed with the intermediates, 1,4-butanediol, and adipic acid to obtain four-component copolymers. In the condensation polymerization, the content of phosphorus was fixed to be 2%, and the content of trichlorobenzoic acid (TBA) that provides chlorine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing chlorine and phosphorus as TTBA-10C, TTBA-20C and TTBA-30C. Average molecular weight and polydispersity index of the prepared TTBAs decreased with increasing TBA content because of the increase in the number of hydroxyl groups that retards reaction. We found that the thermal stability of the prepared TTBAs increased with chlorine content at high temperatures.
        4,200원
        11.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanopowders of titanium dioxide incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped nanopowders incorporating Fe-Zn. The transition element incorporated in the was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped nanopowder showed light absorption over more wide wavelength range than the single-doped nanopowders
        4,000원
        12.
        2005.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was focused on the maximization of flame-retardancy of polyesters by a synergism of simultaneously introduced chlorine and phosphorus into polymer chains of modified polyesters. To prepare modified polyesters, reaction intermediates, TD-adduct (prepared from trimethylolpropane /2,4-dichlorobenzoic acid (2,4-DCBA)) and TMBO (prepared from tetramethlene bis (orthophosphate)), were prepared first, then condensation polymerization of the prepared intermediates, adipic acid, and 1,4-butanediol were carried out. In the condensation polymerization, the content of phosphorus was fixed to be 2wt%, and the content of 2,4-DCBA that provides chlorine component was varied to be 10, 20, and 30wt%, and we designated the prepared modified polyesters containing chlorine and phosphorus as ABTTs. The prepared intermediates and modified polyesters were characterized with FT-IR, NMR, GPC, and TGA analysis. Average molecular weight and polydipersity index of the preparation of ABTTs were decreased with increasing 2,4-DCBA content because of the incease in hydroxyl group that retards reaction. We found that the thermal stability of the prepared ABTTs increased with chlorine content at high temperatures.
        4,500원
        13.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate)(TBOP) were synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-S, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. Network structured PU flame-retardant coatings (APHD) were prepared by curing the synthesized benzoic acid modified polyesters containing phosphorus (APT B - 5 , -10, -15) with hexamethylene diisocyanate (HDI)-timer. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures. With the introduction of BZA, the film viscosity and film hardness of APHD decreased. With the introduction of caprolactone group, the flexibility, impact resistance, accelerated weathering resistance of APTBs increased. Flame retardancy of the coatings was tested. In a vertical burning method, APHD shows 210~313 seconds, which indicates that the coatings are good flame-retardant coatings. Moreover, the amount of afterglow and flame retardancy of the coatings are decreased with increasing BZA content.
        4,500원
        14.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction intermediates PCP/BZA (PBI) and tetramethylene bis(orthophosphate) (TBOP) wer synthesized from polycaprolactone (PCP) and benzoic acid (BZA) and from pyrophosphoric acid and 1,4-butanediol, respectively. Benzoic acid modified polyesters containing phosphorus (APTB-5, -10, -15) were synthesized by polycondensation of the prepared PBI (containing 5, 10, 15wt% of benzoic acid), TBOP, adipic acid, and 1,4-butanediol. The structure and characteristics of APTBs were examined using FT-IR, NMR, GPC, and TGA analysis. The increase of the amount of BZA in the synthesis of APTBs resulted in decrease in average molecular weight and kinematic viscosity. From the TGA analysis of APTBs, it was found that the afterglow decreased with the amount of BZA content at the high temperatures.
        4,200원
        16.
        2003.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An intermediate, tetramethylene bis (orthophosphate), was prepared by the esterification of pyrophosphoric acid and l,4-butanediol. Then pyrophosphoric-containing modified polyesters (ATTBs) were synthesized by polycondensation of tetramethylene bis(orthophosphate), trimethylolpropane, adipic acid, and l,4-butanediol. The content of l,4-butanediol was varied from 10 to 20wt% for the reaction. The increase of the amount of l,4-butanediol in the synthesis of ATTBs resulted in increase in average molecular weight and decrease in kinematic viscosity owing to the excellent flowability and reactivity of l,4-butanediol.
        4,000원
        18.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two-component polyurethane flame-retardant coatings were prepared by blending trichloro aromatic modified polyesters(TCMPs) and polyisocyanate. TCMPs were synthesized by polycondensation of trichlorobenzoic acid(TCBA), a flame-retardant component, with adipic acid, 1,4-butanediol, and trimethylolpropane. The content of TCBA was varied in 10, 20, and 30 wt% for the reaction. These new flame-retardant coatings showed various properties comparable to other non-flame-retardant coatings. Moreover, we carried out the combustion test and the flammability test for our flame-retardant coatings. The results of vertical burning test for the coatings containing more than 20 wt% of TCBA were determined as 'no burn'. The results of flammability test for the coatings with 20 wt% and 30 wt% of TCBA contents indicated the limiting oxygen index(LOI) values of 25% and 28% respectively, which implied relatively good flame retardancy.
        4,000원
        1 2