검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 21

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We conducted research on the removal performance of various odor substances using a deodorizing agent, hypochlorite ion (OCl-), in odor emission sites where various odor-causing substances occur simultaneously. In experiments treating odor gases containing mixtures of aldehydes (acetaldehyde, n-butyl aldehyde, iso-valeraldehyde, propionaldehyde), sulfur compounds (hydrogen sulfide, methyl mercaptan, and dimethyl sulfide), and nitrogen compounds (ammonia and trimethyl amine), it was demonstrated that the introduced odor substances could be simultaneously removed when electrolyzed water was used. The overall removal efficiency was found to be significantly higher than when water alone was used. Particularly, it showed simultaneous effectiveness against acidic, neutral, and alkaline odor substances such as ammonia and hydrogen sulfide. Considering the positive aspects with regard to chemical safety, the use of salt instead of chemicals, and the continuous regeneration of the oxidizing agent, this environmentally friendly deodorization technology is expected to contribute to securing excellent odor removal capabilities and wide-ranging deodorization applications.
        4,200원
        2.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Starfish are creatures that destroy marine ecosystems due to their high reproductive rate and predatory nature. Instead of mass incineration, this study attempted to utilize them as functional adsorbents to control odorous organic compounds. This waste starfishbased adsorbent showed a high aldehyde capture efficiency of 91.1%. The maximum specific surface area of the prepared waste starfish adsorbent was 2.19m2/g, and the adsorption amount was 101.66mg/g. Therefore, it was confirmed that the waste starfish had the ability to perform well as an adsorbent.
        4,000원
        3.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We analyzed volatile organic compounds (VOCs) of petroleum-based laundry solvents in closed systems by static headspace analysis and investigated the emission characteristics of odorous compounds emitted from organic solvents in the small-scale dry cleaning process. The compounds containing eight to eleven carbon atoms were analyzed to account for 96.92% of the total peak area in a GC-MS chromatogram. It was found that the compounds with ten carbon atoms showed the largest proportion. In the small-scale dry cleaning process (3 kg of laundry and 40 min of drying time), a total of 36 VOCs was quantified, and the odor contribution of these compounds was evaluated. The sum of the odor quotient (SOQ) was analyzed up to 151±163 in the first 12 min of operation. The main odor-causing compounds were acrolein, ethylbenzene, hexane, acetone, and decane, and their odor contributions were 32.28%, 13.47%, 10.52%, 10.20%, and 8.08%, respectively.
        4,000원
        4.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two sewage treatment facilities were selected to identify odor emission characteristics, focusing on volatile organic compounds (VOCs) and sulfur compounds. The complex odor, 5 kinds of sulfur compounds and 23 kinds of VOCs were analyzed from gas and sludge storages. Hydrogen sulfide was detected in the highest concentration and had the highest odor quotient among the odorous compounds monitored in this study, demonstrating that the contribution of hydrogen sulfide to the complex odor reached up to 90%. For VOCs, the overall contribution to the complex odor was not critical but VOCs can sufficiently trigger an odorous sensation because the sum of the odor quotient reached up to 2.89.
        4,000원
        5.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, we evaluated the effect of pH modulation on concentrations of odorous compounds and pollutants in pit slurry from pig operation building. A slurry sample was taken from the pit of a pig operation building where 50 finishing pigs [(Landrase × Yorkshire) × Duroc] were kept. Three levels of pH (6, 8 and 10) were measured and adjusted daily during the incubation periods using chemical reagents of 1 N HCl or 3 N NaOH. Concentrations of odorous compounds and pollutants were analyzed from slurry incubated for 7 days. When these material concentrations were compared with the pH 8 slurry which was the pH of pit slurry, levels of short chain fatty acids, indoles and total organic carbon were reduced 7%, 68% and 2%, respectively, in the pH 6 treatment (P<0.05). Ammonium nitrogen, phenols and total nitrogen concentrations were lower by 31%, 18% and 17%, respectively, than with the pH 10 slurry (P<0.05). When the odor contribution in pH treatments was assessed according to the odor activity value, it was found to be 23% lower in the pH 6 treatment compared with pH 8. The pH modulation would affect odor emissions and microbial activity from pit slurry. Although not all odorous compounds showed the reduction effect with the same pH control, this study can be effectively used as base data when using additives for pH control.
        4,000원
        6.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this experiment was to evaluate the effect of Chamaecyparis obtus extract to reduce odor emissions released from the swine feeding operations. Finisher pigs [Landrace × (Yorkshire × Duroc)] with an initial body weight averaging 50 kg were housed separately in two rooms with eighty eight pigs in each room at a swine feeding operation site. C. obtus extract was sprayed in the room by ceiling sprayer for one minute at twice per day during two months. Concentrations of odorous compounds from air in the room of the swine feeding operation were analyzed at four times during two months. Levels of butyric acid, valeric acid, i-butyric acid, ivaleric acid, skatole, methylmercaptan, and trimethylamine tended to decrease in C. obtus extract spray treatment group compared to the non-spray treatment group (P > 0.05). Odor activity values of butyric acid, valeric acid, skatole and trimethylamine were higher than other odorous compounds and decreased by 72%, 76%, 54% and 20%, respectively, in C. obtus extract spray treatment group compared to the non-spray group. Taken together, C. obtus extract showed an odor reducing capability in the air of a swine feeding operation suggesting that it possesses anti-bacterial properties as well as having a dust removal and masking effect.
        4,000원
        7.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The metal plating industry produces a large amount of wastewater generally containing heavy metals with various chemical compounds; as such, treating the wastewater is both an environmental and an economic challenge. A vacuum evaporation system has been developed to effectively reduce the volume of plating wastewater. However, the gas stream discharged from the distillation unit of the evaporator is often contaminated with high concentrations of odorous compounds such as ammonia and dimethyl disulfide (DMDS). In this study, a non-thermal plasma process operated in wet conditions was applied to remove the odorous compounds, and it showed high removal efficiencies of greater than 99% for ammonia and 95% for DMDS. However, the gas flowrate more substantially affected the efficiency of ammonia removal than the efficiency of DMDS removal, because the higher the gas flowrate, the shorter the contact time between the odorous compound and the mist particles in the wet plasma reactor. The analyses of the maximum removal capacity indicated that the wet non-thermal plasma system was effective for treating the odorous compounds at a loading rate of less than 20 mg/m3/min even though the lowest amount of electrical power was applied. Therefore, the wet-type non-thermal plasma system is expected alleviate to effectively abate the odor problem of the vacuum evaporator used in the treatment of plating wastewater.
        4,000원
        8.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The principal hygienic problem caused by livestock industry is the odor exposed to farm workers. This study was performed to assess air cleaner efficiency for reducing odor through on-site evaluation. The concentration of ammonia and hydrogen sulfide, which are major odorous compounds generated from livestock building, were monitored by realtime direct recorder. The odor mixture was measured by air dilution method applying human noses of five panels. Their reduction efficiencies were represented by difference between initial concentration exhausted by non-treatment and concentration measured after treatment of respective control mechanism (water, germicide and plasma ion) of air cleaner. Mean levels of ammonia and hydrogen sulfide were 1.84 (SD:0.22) ppm and 76.83 (SD:1.37) ppb for non-treatment, 1.23 (SD:0.09) ppm and 59.07 (SD:2.68) ppb for wet scrubber (water), 1.08 (SD:0.03) ppm and 58.55 (SD:1.62) ppb for wet scrubber (germicide), and 0.96 (SD:0.03) ppm and 53.66 (SD:1.37) ppb for plasma ion, respectively. Mean dilution factors of odor mixture were 100 for non-treatment, 66.9 for wet scrubber (water), 144.2 for wet scrubber (germicide), and 66.94 for plasma ion, respectively. Based on the results obtained from on-site evaluation, ammonia and hydrogen sulfide showed the mean reduction efficiency of 40% and 25.7% compared with non-treatment process of air cleaner, respectively. In the case of odor mixture, the highest dilution factor was observed at wet scrubber (germicide) compared with other control mechanism of air cleaner.
        4,000원
        9.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To evaluate the relationship between dynamics of cyanobacteria and odorous compounds, a monthly monitoring of water quality and phytoplankton were conducted at the three serial lakes (Lake Ui-am, Lake Cheong-pyeong and Lake Pal-dang) in the North Han River for 11 times from May 2014 to March 2015. In the three serial lakes, phytoplankton communities showed that seasonal changes in Bacillariophyceae- Cyanophyceae-Bacillariophyceae. Anabaena and Pseudanabaena were dominant species in August and September 2014. At the same time the odors (Geosmin, 2-MIB) were also detected with high concentration. Relationship between environmental factors and cyanobacterial abundance showed a significant correlation with Anabaena circinalis and geosmin (r=0.983, p<0.01). In the case of Pseudanabaena limnetica showed a significant correlation of total nitrogen (r=0.685, p<0.01) and NO3-N (r=0.723, p<0.01). In addition, similarly Pseudanabaena limnetica and 2-MIB (r=0.717, p<0.01) was high. The odorous compounds appeared in the North Han River water were considered to be a direct relationship with cyanobacteria.
        4,000원
        10.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        양돈 사료에 발효탄수화물을 첨가하여 돼지의 슬러리에 서 악취물질의 농도를 평가하였다. VFA 분석결과, 분뇨의 SCFA 농도는 대조구, 땅콩껍질, 아몬드피 및 골든화이버 구에서 각각 1,893, 1,591, 1,433 및 1,319 ppm으로 대조구 에서 가장 높았고(p<0.05), 아몬드피와 골든파이버 구에서 가장 낮았다(p<0.05). VFA의 구성을 살펴보면 SCFA 중에 서 아세트산의 비율이 가장 높으며, 다음으로 프로피온산, 부티르산, BCFA 순으로 낮았다. BCFA의 농도는 대조구, 땅콩껍질, 아몬드피 및 골든화이버 구에서 각각 98, 92, 78 및 74 ppm으로 대조구에서 가장 높았고(p<0.05), 골든화이 버 구에서 가장 낮았다(p<0.05). VOC 분석결과, 분뇨의 페 놀류 농도는 대조구, 땅콩껍질, 아몬드피 및 골든화이버 구 에서 각각 97.3, 47.0, 54.3 및 33.3 ppm으로 골든화이버 구 에서 가장 낮았으며, 대조구에서 가장 높았다(p<0.05). 그 리고 p-크레졸 농도가 페놀류 농도의 93~96%를 차지하였 다. 인돌류 농도는 대조구, 땅콩껍질, 아몬드피 및 골든화 이버 구에서 각각 1.8, 1.3, 1.2 및 1.0 ppm으로 발효탄수화 물 처리구간에 차이가 없었으며(p>0.05), 대조구에서 가장 높았다(p<0.05). NH4 +-N의 농도는 대조구, 땅콩껍질, 아몬 드피 및 골든화이버 구에서 각각 1,395, 995, 995 및 836 ppm으로 대조구에서 가장 높았으며, 골든화이버 구에서 가 장 낮았다(p<0.05). 가축의 장내 또는 슬러리에서 발효과정 동안 미생물이 성장을 위해 필요로 하는 에너지가 제한요 소로 작용되면, 미생물은 단백질을 에너지원으로 이용하기 때문에 많은 아미노산이 분해되어 악취물질이 증가 될 수 있다. 따라서 다른 처리구에 비하여 골든화이버 구에서 VOC의 농도가 가장 낮은 것은 골든화이버의 높은 NDF 함량으로(Getachew et al., 2004) 단백질 발효보다 탄수화 물 발효가 활발하게 일어나 악취물질의 농도가 낮았다고 판단된다.
        4,000원
        11.
        2013.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This field study was performed to investigate indoor concentrations of 22 odorous compounds, which are regulated by the domestic act, emitted from poultry buildings through on-site visit per month from July, 2011 to June, 2012. Of 22 odorous compounds, the highest concentration was found in ammonia with ppm unit, followed by hydrogen sulfide, methyl ethyl ketone, propionic acid and butylic acid with ppb unit of approximate hundred level. The other odorous compounds were detected below ppb unit of approximate ten level. A remarkable finding is that there is no poultry building which showed the airborne levels of five aldehyde- based odorous compounds (acetaldehyde, propionaldehyde, butyraldehyde, n-valeraldehyde and i-valeraldehyde). Generally there was no consistent concentration distribution of odorous compounds between poultry building applied with forced ventilation and poultry building applied with natural ventilation. It was found, however, that there was considerable concentration difference among odorous compounds. In temporal distribution of odorous compounds, their concentrations in summer season (June to August) when ventilation rate in poultry building decreased relatively were generally higher than those in winter season (December to February) when ventilation rate in poultry building is relatively high. The seasons of spring (March to May) and autumn (September to November) showed middle levels of odorous compounds between summer and winter. The limit of this study is that unexpected conditions such as clearance of poultry building, poultry shipment and disorder of air pump were not controlled intentionally on the on-site investigation days.
        4,600원
        12.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate concentration and emission factor of 22 odorous compounds, which are regulated by the domestic act, emitted from poultry buildings by on-site investigation. The odorous compounds which were detected in at least one poultry building were ammonia, hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, trimethyl amine, styrene, toluene, xylene and methyl ethyl ketone whereas other 12 odorous compounds were not detected in poultry buildings. Generally there was no consistent concentration distribution of odorous compounds between poultry building applied with forced ventilation and poultry building applied with natural ventilation. It was found, however, that there was considerable concentration difference among odorous compounds. In monthly distribution of odorous compounds, their concentrations in September and October when ventilation rate in pig building decreased relatively were generally higher than those in July and August when ventilation rate in pig building is relatively high. On the contrary, emission factors of odorous compounds, in terms of ammonia and hydrogen sulfide, in poultry building were relatively higher in July and August than September and October. The limit of this study is that unexpected conditions such as clearance of poultry building, poultry shipment and disorder of air pump were not controlled intentionally on the on-site investigation days.
        4,000원
        13.
        2012.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to investigate concentration and emission coefficients of 22 odorous compounds, which are regulated by the domestic act, emitted from pig buildings by on-site survey. The odorous compounds which were detected in at least one pig building were ammonia, hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, trimethyl amine, stylene, toluene, xylene and methyl ethyl ketone whereas other 12 odorous compounds were not detected in pig buildings. In general, indoor concentrations of odorous compounds in pig buildings were higher in scraper type than slurry type based on pig manure collection system and higher in enclosed type than winch-curtain type based on ventilation mode, respectively. In monthly distribution of odorous compounds, their concentrations in September and October when ventilation rate in pig building decreased relatively were generally higher than those in July and August when ventilation rate in pig building is relatively high. On the contrary, the emission coefficients of odorous compounds in pig building were generally higher in July and August than September and October. The levels of emission coefficients of odorous compounds obtained from this study were similar or slightly higher compared to those reported previously from foreign countries.
        4,200원
        14.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the removal efficiency of 24 odorous compounds was measured in diverse control process units of 7 individual chemical companies located in Ban-Wall & Shi-Wha Industrial Complex in Gyeonggi-do, Korea from March to August, 2007. To quantify the removal efficiency rates of major odorous compounds, we collected odor samples from the inside process and both the front and rear side of 7 control process units. As the results of this study, it was shown that toluene, ammonia, trimethylamine (TMA) and acetaldehyde were dominant odorous compounds in the inside process. In addition, VOCs, TMA and acetaldehyde were also detected at higher concentrations in the stacks and 10 (toluene, acetone, ethyl benzene, xylene etc.) out of 24 index compounds were found to have negative removal efficiencies. According to the removal efficiency evaluation of seven odor control facilities, a company equipped with two connected absorption processes was shown to have positive (+) removal efficiencies for 16 odor substances and NH₃, TMA, acetaldehyde, the priority odor substances, which meant the proper control system was installed and operated. Hence, to obtain best removal efficiency of odorous pollutant emission, the database on source characteristics and the development of management techniques of diverse control process units are continually needed.
        4,000원
        15.
        2006.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        The emission concentrations of VOC and various odorous compounds were measured from different indoor process units located in 19 companies at the Ban Wall industrial complex from Jun. 2004 to Jan. 2005. The purpose of this study was to investigate the indoor pollution levels of various industrial facilities with respect to bothmalodorous compounds and volatile organic compounds (VOC). We also intended to build the database under the conditions affected by various anthropogenic processes with an aid of a statistical treatment. The three samplingmethods and five analytical techniques were applied tomeasure the sum of up to 32 individual compounds. According to this study, we were able to identify the importance ofmajormalodor compounds which include carbonyl compounds, reduced sulfur compounds, ammonia and trimethylamine. On the other hand, relative contribution of VOC as sources ofmalodor was ofminor significance except such compound as toluene. The overall results of this study thus indicate that the concentration levels of VOC in themanufacturing facilities are high enough to affect indoor laboring conditions.
        5,700원
        16.
        1999.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 대청호에서 식물플랑크톤의 우점종 변화양상과 취기물질 생산종을 밝히기 위해 1998년 5월부터 11월까지 월별로 2개 정점(추동, 회남교)을 선정하여 이 화학적 수질과 식물플랑크톤의 분포를 조사하였으며, 대표적 취기물질인 geosmin과 2-methylisoborneol (MIB) 의 분포를 purge & trap concentrator가 장착된 gas chromatograph로 조사하였다. 조사기간에 나타난 식물 플랑크톤의 계절적 분포는 수온, pH 및 총질소/총인 등과 상관관계가 있는 것으로 분석되었다. 조사된 식물플랑크톤 중에서 cyanobacteria가 평균 54% (세포수 기준)의 우점을 나타낸 추동수역(정점 1)에서는 geosmin이 7 월, 8월 하순에 세포건량기준으로 각기 1.1 ng/mg, 18.1 ng/mg이 검출되었고, 63% 이상의 우점을 보인 회남교수 역(정점 2)에서는 geosmin이 7월, 8월 하순에 각각 0.7 ng/mg 및 69.8 ng/mg, MIB가 7월 하순에 0.6 ng/mg 검 출되었다. 따라서 geosmin과 MIB는 조사기간중 cyanobacteria가 우점하게 되는 7월, 8월에 주로 Anabaena에 의해 생산되는 것으로 판단된다.
        4,000원
        17.
        2018.10 서비스 종료(열람 제한)
        Background : Gastrodia elata Blume (G. elata) is important medicinal resource in korea. Gastrodin and 4-hydroxybenzyl alcohol (4-HBA) are major active compounds of G. elata, and ρ-cresol is major cause of off-odor like pig slurry from G. elata. The off-odor can decrease the quality of fresh G. elata as well as its products. Therefore, this study was performed to investigate the influence of extraction temperature on bio-active and odorous compounds of G. elata extract. Methods and Results : G. elata was extracted with distilled water at 0, 30, 60, and 90℃ for 20, 40, 60, and 120 min. Gastrodin and 4-HBA contents were analyzed by using a HPLC-UVD, and ρ-cresol content was analyzed by using a SPME-GC-MS. Gastrodin content increased as increasing extraction temperature and time, and showed the highest value in extract at 90℃. 4-HBA content showed the highest value at 60℃, and increased as increasing extraction time. Total content of gastrodin and 4-HBA was higher in extract from G. elata at 60℃ for 120 min than other extracts. ρ-Cresol content was varied according to extraction temperature, and was lower in extract at 30 and 60℃ than 0 and 90℃. Conclusion : These results indicated that the extraction temperature can affect the bio-active components and off-odor of G. elata extract, and 60℃ is appropriate to improve the qualities including bio-active component and off-odor of G. elata extract and its products.
        18.
        2016.04 KCI 등재 서비스 종료(열람 제한)
        In this study, GC-MS linked with an automatic thermal desorber was used to quantitatively analyze the odorous and volatile compounds in the gas emitted from a sewage sludge drying facility. In addition, the removal characteristics of these compounds were investigated by using a pilot-scale packed bed wet scrubber. A quantitative analysis for 58 odorous and volatile compounds in the gas was successfully achieved with GC-MS and GC-FPD. The a quantitative analysis revealed the major odorous compounds were hydrogen sulfide and acetaldehyde. In addition, D-type siloxane compounds such as octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were quantitatively measured. The concentrations of siloxane compounds measured in the gas were in the range of 4.54- 7.36 ppmv, higher than those in landfill gas. The average removal efficiency of the odorous and volatile compounds in a wet scrubber was 67.37%. D4, D5, and D6, which are hydrophobic compounds, were also removed by as much as 50.68%, 44.56%, and 70.26%, respectively.
        19.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        The concentrations of offensive odorous compounds emitted from the two chemical plants in Chongju and Yeosu industrial complex in Korea were determined by uv/vis spectroscopy, gas chromatography, and high performance liquid chromatography. The odorous compounds examined in this study are ammonia, trimethyl amine, formaldehyde, acetaldehyde, propion aldehyde, butyl aldehyde, n-valeric aldehyde, iso-valeric aldehyde, hydrogen sulfide, methyl mercaptan, dimethyl sulfide and dimethyl disulfide. The concentrations of those were determined from the 10 sampling points of the two plants, respectively. The emission concentrations of all odorous compounds examined in the two plants were lower than those of the regulation standard levels of industrial complex in Korea, respectively. The propion aldehyde, n-valeric aldehyde, methyl mercaptan and dimethyl disulfide in Chongju and Yeosu plants, and butyl aldehyde and iso-valeric aldehyde in Yeosu plant were not detected at any sampling points examined.
        20.
        2007.01 KCI 등재 서비스 종료(열람 제한)
        In this study, the concentrations of offensive odorous compounds seasonally emitted from the chemical plant at Chongju industrial complex in Korea were determined by the analytical methods of gas chromatography, high performance liquid chromatography and uv/vis spectroscopy. The kinds of offensive odorous compounds examined are formaldehyde, acetaldehyde, butyl aldehyde, propion aldehyde, n-valeric aldehyde, iso-valeric aldehyde, hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, trimethyl amine and ammonia. The seasonally emission levels of all odorous compounds except dimethyl sulfide at 13 sampling points of plant were lower than those of the regulation standard levels of the industrial complex in Korea. The levels were the highest in June, and lowest in December. The propion aldehyde and iso-valeric aldehyde in June and December, butyl aldehyde in December, and n-valeric aldehyde were not detected in all the three seasons at any sampling points of the plant examined. But in June, dimethyl sulfide was emitted up to 16 times than that of the regulation level.
        1 2