Carbon nanofibers (CNFs) are promising materials for the construction of energy devices, particularly organic solar cells. In the electrospinning process, polyacrylonitrile (PAN) has been utilized to generate nanofibers, which is the simplest and most popular method of creating carbon nanofibers (CNFs) followed by carbonization. The CNFs are coated on stainless steel (SS) plates and involve an electropolymerization process. The prepared Cu, CNF, CNF–Cu, PANI, PANI–Cu, CNF–PANI, and CNF–PANI–Cu electrode materials’ electrical conductivity was evaluated using cyclic voltammetry (CV) technique in 1 M H2SO4 electrolyte solution. Compared to others, the CNF–PANI–Cu electrode has higher conductivity that range is 3.0 mA. Moreover, the PANI, CNF–PANI, and CNF–PANI–Cu are coated on FTO plates and characterized for their optical properties (absorbance, transmittance, and emission) and electrical properties (CV and Impedance) for organic solar cell application. The functional groups, and morphology-average roughness of the electrode materials found by FT–IR, XRD, XPS, SEM, and TGA exhibit a strong correlation with each other. Finally, the electrode materials that have been characterized serve to support and act as the nature of the hole transport for organic solar cells.
Because Scotinophara lurida has the habit of living under the rice plant, an introduction of a method for efficient control when spraying eco-friendly organic materials is needed. In this study, we investigated the density of S. lurida in drained- and irrigated-paddy field after spraying an organic material containing garlic bulb extracts, which has high insecticidal activity in S. lurida in direct spraying test in glass tube. As a result, an irrigated rice paddy showed a control effect of 66.4% after 3 days of spraying and 86.2% after 7 days, while a drained rice paddy showed a control effect of 33.9% after spraying and 61.9% after 7 days. These results suggest that effective control can be achieved in irrigated rice fields if organic farming materials are evenly sprayed and reach to the body of S. lurida. It is remained to study how irrigated water do contribute to increase the insecticidal effect in the future.
본 연구에서는 유기용매용 나노여과막 (Organic Solvent Nanofiltration, OSN)의 유기용매 투과 및 분리성능을 분 석하였다. 비극성용매에 적합한 Puramem (PM) 시리즈 분리막의 소재를 분석한 후 다양한 유기용매 분위기에서의 투과성능 을 데드엔드셀로 측정하였다. PM 시리즈 분리막은 극성용매 대비 비극성용매에서 더 높은 투과도를 보였으며, 용질의 종류 및 분자량에 따라 매우 독특한 배제성능을 보이는 것을 확인하였다. 이는 기존 수처리에 적용되는 Solution-diffusion 투과모 델이 OSN 투과모델에는 적합하지 않다는 것을 알 수 있으며, solvent-solute-membrane 간의 상관관계를 더 정확하게 반영할 수 있는 새로운 인자가 필요하다는 결론을 낼 수 있다.
Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/ hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.
본 연구에서는 “이온젤” 이라고 불리는 고분자 기반의 PVA(polyvinyl alcohol) 기반의 고체 전 해질에 이온성 액체 BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate)를 첨가하여 제조한 전 고체 전해질과 활성탄소와 금속유기골격체 복합재료 기반의 전극 재료를 이용하여 슈퍼커패시터를 제작 하였으며, 유기골격체의 유 무에 따른 전기화학적 특성을 분석하여 보았다. 슈퍼커패시터의 전기화학적 특 성은 순환전압전류법(CV), 전기화학적 임피던스 분광법(EIS) 및 전정류 충·방전법(GCD)을 통하여 비교 및 분석하여 보았다. 그 결과로, 금속유기골격체가 함유되지 않은 슈퍼커패시터의 전기용량값은 380 F/g 으로 확인 할 수 있었고, 이 값은 금속유기골격체를 첨가하였을 때 340 F/g로 감소하는 현상을 확인할 수 있었 다. 이러한 결과로 1 wt%의 금속유기골격체의 함유량은 전기화학적 특성 감소에 영향을 주는 것으로 사료 되며 이러한 결과를 바탕으로 금속유기골격체의 첨가량을 최적화 할 필요가 있다고 판단된다
본 실험에서는 실제 원수와 모사 원수를 이용하여 유기막(PES, PVDF 및 PTFE)을 이용하여 재질에 따른 막오염 특성을 분석하고자 하였다. 먼저 원수를 운전압력 1kgf/cm2로 여과하였다. 재질별 소요된 여과 시간은 약 5분, 약 13분, 약 17분으로 각각 나타났다. 또한 모사 원수 실험을 진행하였고, 원수 실험과 동일한 결과를 나타냈다. Jucker 와 Clark(1994)에 따르면 소수성 재질의 막이 유기물 흡착에 의한 Flux 감소가 크다고 보고하였고, 본 실험에서도 소수성 재질의 막이 높은 Flux 감소율을 나타났다. 실험 결과를 통해 막 재질 특성이 조류 유입에 따른 Flux 감소율에 영향을 미치는 것을 확인하였다.
본 연구는 환경부의 “환경정책기반공공기술개발사업”으로 지원받은 과제입니다.
New type of White-Light Emitting Diode (WOLED) that emits three primary colors of red, green and blue has been demonstrated. WOLED is properly laid out with emitting layers so that all three wavelengths of light can be emitted by using fit energy level, and the organic functional layer named white balanced layer (WBL) is introduced. As for the material used as WBL, the experiment used NPB that has electron blocking effect with its large LUMO value. The color purity of such WOLED can be easily adjusted through the adjustment of the number of electron carriers injected into light emitting layer. In this of study, color coordinate was (0.341, 0.424) and light emitting efficiency was 16.5 cd/A at current density 10 mA/cm2, so the WOLED demonstrated highly efficient characteristics of over commercial level.
7-(4-([1,1-biphenyl]-4-yl(9,9-dimethyl-9H-fluoren-2-yl)amino)phenyl)-4-methyl-2H-chromen-2-one (BPFA-C) including coumarin moiety was synthesized through Suzuki aryl-aryl coupling reaction. Optical and electrical properties were examined by UV-visible absorption spectra, PL spectra, and AC-2. UV-visible spectrum of BPFA-C in a film state showed maximum absorption wavelength of 367 nm. PL spectrum of BPFA-C show maximum emission wavelength of 511 nm. BPFA-C showed highly efficient luminescence property. EL spectrum of BPFA-C exhibited a maximum value of 504 nm and BPFA-C device provided luminescence efficiency of 4.59 cd/A, power efficiency of 3.17 lm/W, and CIE (x,y) of (0.25, 0.53) at a current density of 10 mA/cm².
블루베리 재배시 토양 유기물 공급원으로 쓰이고 있는 피트모스가 전량 수입에 의존하고 있어 국내에서 생산되는 소나무잎, 왕겨, 톱밥 등 유기물을 블루베리 정식 전 피트모스와 혼합처리 한 후 토양 pH 변화와 생육 및 과실 특성에 미치는 영향을 구명하고자 본 시험을 수행하였다. 시험품종은 2년생 북부 하이부시 블루베리 ‘Duke’ 품종이었고 묘목 정식 전 피트모스를 근권에 20L 단용으로 처리하는 방법과 피트모스(10L)와 소나무잎, 왕겨, 톱밥을 각각 10L씩 혼합 처리하는 방법으로 실시하였다. 유기물의 화학성 분석 결과 pH는 피트모스가 4.3으로 가장 낮았고 소나무잎은 4.8, 왕겨는 7.3, 톱밥은 5.7이었다. 정식 직후 유기물을 투여한 토양의 pH는 5.3~5.9 로 나타났고 피트모스단용, 피트모스+소나무잎 처리가 왕겨, 톱밥 혼합처리에 비해 낮았다. 정식 후 3년차 토양 pH는 4.2~4.5로 피트모스단용, 피트모스+소나무잎 처리에서 낮게 유지되었다. 유기물 조성에 따른 생육 시기 별 토양수분 함량은 피트모스+소나무잎>피트모스단용> 피트모스+톱밥>피트모스+왕겨 순으로 높게 나타났다. 생육은 피트모스 단용과 피트모스+소나무잎 처리에서 양호하였고 꽃눈수가 많아 초기 수량이 많았다. 당도는 피트모스 단용 처리에서 11.3 oBrix로 높았고 경도는 피트 모스+소나무잎 처리에서 증가되었으나 과실 품질에 있어 처리별 유의차는 없었다.
The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.
Recently, inorganic-organic hybrid materials have attracted much attention not only for their excellent thermal conductivity but also for their flame retardant properties. In this study, the properties of organic-inorganic hybrid insulating materials using inorganic fillers and polyurethane foam with different foaming conditions have been investigated. The addition of 1.5 wt% water to polyurethane as foaming agent shows the best foaming properties. The pore size was decreased in the foaming body with increasing of the CaCO3 addition. The apparent density and thermal conductivity were increased by increasing the CaCO3 addition. With an increasing amount of CaCO3 powder, the flame retardant property is improved, but the properties of thermal conductivity and apparent density tend to decrease. When the addition of fine particles of CaCO3, the apparent density and thermal conductivity were increased and, also, with the addition of coarse particles over 45μm in size, the apparent density and thermal conductivity were increased as well. In this study, the adding of CaCO3 with average particle size of 27μm led to the lowest thermal conductivity and apparent density. After evaluation with different inorganic fillers, Mg(OH)2 showed the highest thermal conductivity; on the other hand, CaCO3 showed the lowest thermal conductivity.
본 연구에서 7,7'-(2,2'dimethoxy-1,1'-binaphthyl-3,3'-diyl) bis(4-(thiophen-2-yl) benzo[e] [1,2,5] thiadiazole (TBT) 라는 binaphthyl기를 기반으로 가지는 녹색 도판트 물질을 합성하였다. 추가적으로 인광 발광 물질인 iridium(III)bis[(4,6-di-fluoropheny)-pyridinato -N,C2]picolinate (FIrpic)을 홀 수송용 호스트 물질인 N,N'-dicarbazolyl-3,5-benzene (mCP)에 도핑하고, TBT와 bis(2-phenylquinolinato)-acetylacetonate iridium(III) (Ir(pq)2acac)를 전자 수송용 호스트 물질인 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi)에 도핑하여 백색 빛을 발광하는 white organic light emitting diode (OLED)를 제작하였다. TBT를 사용하여 제작한 white OLED의 최대발광 효율과 외부 양자 효율은 각각 5.94 cd/A 과 3.23%를 나타냄을 알 수 있었다. Commission Internationale de I'Eclairage (CIE) 색 좌표의 값은 1000 nit에서 (0.34, 0.36)을 띄면서 순백색을 구현함을 확인하였다.
0.4μm의 세공크기를 갖고 있는 평막이 침지된 연속회분식 반응기에서 유입 유기물 농도가 영양염류 제거에 미치는 영향을 조사하였다. 분리막의 여과성능과 영양염류 제거효과를 규명하기 위하여 유입 유기물의 농도를 200 mg/L (Run-1), 400 mg/L (Run-2) 및 800 mg/L (Run-3)로 연속적으로 변화시키면서 실험하였다. COD/N 및 COD/P의 비가 증가할수록 T-N 및 T-P의 제거율은 모두 증가하였다. Run-1, Run-2 및 Run-3에서 T-N의 평균 제거율은 각각 28.1, 32.6 및 90.4%이었으며, 투과수의 T-N 평균 농도는 각각 32.0, 30.0 및 4.3 mg/L 이었다. 또한 Run-1, Run-2 및 Run-3에서 T-P의 평균 제거율은 각각 13.6, 35.3 및 93.1%이었으며, 투과수의 T-P 평균 농도는 각각 3.11, 2.33 및 0.25 mg/L이었다.
A new blue phosphorescent material for organic light emitting diodes (OLEDs), Iridium(III)bis[2-(4-fIuoro-3-benzonitrile)-pyridinato-N,C2'] picolinate (Firpic-CN), was synthesized and studied. We compared characteristics of Firpic-CN and Bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FIrpic) which has been used for blue dopant materials frequently. The devices structure were indium tin oxide (ITO) (1000 a)/N,N'-diphenyl-N,N'-(2-napthyl)-(1,1'-phenyl)-4,4'-diamine (NPB) (500 a)/4,4'-N,N'-dicarbazole-biphyenyl (CBP) : FIrpic and FIrpic-CN (X wt%)/4,7-diphenyl-1,10-phenanthroline (BPhen) (300 a)/lithum quinolate (Liq) (20 a)/Al (1000 a). 15 wt% FIrpic-CN doped device exhibits a luminance of 1450 cd/m2 at 12.4 V, luminous efficiency of 1.31 cd/A at 3.58mA/cm2, and Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.15, 0.12) at 12 V which shows a very deep blue emission. We also measured lifetime of devices and was presented definite difference between devices of FIrpic and FIrpic-CN. Device with FIrpic-CN as a dopant presented lower longevity due to chemical effect of CN ligand.
Graphene oxide (GO)-titania composites have emerged as an attractive heterogeneous photocatalyst that can enhance the photocatalytic activity of TiO2 nanoparticles owing to their potential interaction of electronic and adsorption natures. Accordingly, TiO2-GO mixtures were synthesized in this study using a simple chemical mixing process, and their heterogeneous photocatalytic activities were investigated to determine the degradation of airborne organic pollutants (benzene, ethyl benzene, and o-xylene (BEX)) under different operational conditions. The Fourier transform infrared spectroscopy results demonstrated the presence of GO for the TiO2-GO composites. The average efficiencies of the TiO2-GO mixtures for the decomposition of each component of BEX determined during the 3-h photocatalytic processes were 26%, 92%, and 96%, respectively, whereas the average efficiencies of the unmodified TiO2 powder were 3%, 8%, and 10%, respectively. Furthermore, the degradation efficiency of the unmodified TiO2 powder for all target compounds decreased during the 3-h photocatalytic processes, suggesting a potential deactivation even during such a short time period. Two operational conditions (air flow entering into the air-cleaning devices and the indoor pollution levels) were found to be important factors for the photocatalytic decomposition of BEX molecules. Taken together, these results show that a TiO2-GO mixture can be applied effectively for the purification of airborne organic pollutants when the operating conditions are optimized.
This study was carried out to investigate the effect of soil covering materials such as rice bran, rice hull and saw dust on garlic growth through a field experiment in wintertime. Rice bran was the smallest in term of particle size, but it recorded the highest level of bulk density. The missing plant rate after winter season was relatively high, 59.3%, and that of soil covering materials stood at the low level of 10%. Other growth factors recorded the highest level during application of rice bran. In terms of chemical properties of soil-covering materials, rice bran recorded the highest level of 1.84, 2.34 and 0.16% in the content of N, P, and K, respectively. The subsoil temperature was higher by application of rice bran as compared to that of other materials which stood at the lowest temperature (-90 C).
Organic and chemical fertilizer amendments are an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shift of soil microorganism, which control the cycling of many nutrients in the soils. Here, culture-dependent and cultureindependent approaches were used to analyze the soil microorganism and community structure under six fertilization treatments, including green manure, rice straw compost, rapeseed cake, pig mature compost, NPK +pig mature compost, NPK and control. Both organic and chemical fertilizers caused a shift of the cultural microorganism CFUs after treatments. Bacterial CFUs of the organic fertilization treatments were significantly higher than that of chemical fertilization treatments. The DGGE profiles of the bacterial communities of the samples showed that the green manure treatment was a distinct difference in bacterial community, with a greater complexity of the band pattern than other treatments. Cluster analyses based on the DGGE profile showed that rice straw compost and pig mature compost had a similar banding pattern and clustered together firstly. Rapeseed cake, NPK, NPK + pig manure compost and control clustered together in other sub-cluster and clearly distinguished from green manure.