검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 48

        1.
        2023.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 °C The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.
        4,000원
        2.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100oC. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.
        4,000원
        3.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zintl phase Mg3Sb2 is a promising thermoelectric material in medium to high temperature range due to its low band gap energy and characteristic electron-crystal phonon-glass behavior. P-type Mg3Sb2 has conventionally exhibited lower thermoelectric properties compared to its n-type counterparts, which have poor electrical conductivity. To address these problems, a small amount of Sn doping was considered in this alloy system. P-type Mg3Sb2 was synthesized by controlled melting, pulverizing, and subsequent vacuum hot pressing (VHP) method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate phases and microstructure development during the process. Single phase Mg3Sb2 was successfully formed when 16 at.% of Mg was excessively added to the system. Nominal compositions of Mg3.8Sb2-xSnx (0 ≤ x ≤ 0.008) were considered in this study. Thermoelectric properties were evaluated in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity. A peak ZT value ≈ 0.32 was found for the specimen Mg3.8Sb1.994Sn0.006 at 873 K, showing an improved ZT value compared to intrinsic one. Transport properties were also evaluated and discussed.
        4,000원
        4.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 oC. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.
        4,000원
        7.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Bi-Sb-Te thermoelectric materials are produced by mechanical alloying (MA) and spark plasma sintering (SPS). To examine the influence of the milling atmosphere on the microstructure and thermo-electric (TE) properties, a p-type Bi-Sb-Te composite powder is mechanically alloyed in the presence of argon and air atmospheres. The oxygen content increases to 55% when the powder is milled in the air atmosphere, compared with argon. All grains are similar in size and uniformly, distributed in both atmospheric sintered samples. The Seebeck coefficient is higher, while the electrical conductivity is lower in the MA (Air) sample due to a low carrier concentration compared to the MA (Ar) sintered sample. The maximum figure of merit (ZT) is 0.91 and 0.82 at 350 K for the MA (Ar) and MA (Air) sintered samples, respectively. The slight enhancement in the ZT value is due to the decrease in the oxygen content during the MA (Ar) process. Moreover, the combination of mechanical alloying and SPS process shows a higher hardness and density values for the sintered samples.
        4,000원
        8.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 P300 숨긴정보검사에서 관련자극과 무관련자극에 대한 버튼 반응 여부가 P300 진폭과 거짓말 탐지 정확률에 미치는 영향을 검증하였다. 실험참가자들은 두 가지 조건에서 P300 숨긴정보검사를 받았다. 일반응 조건에서는 실험참가자들에게 목표자극이 제시될 때에만 마우스 왼쪽 버튼을 누르도록 지시하였으며, 양반응 조건에서는 제시되는 자극이 목표자극이면 마우스 왼쪽 버튼을 누르고 목표자극이 아니면 마우스 오른쪽 버튼을 누르도록 하였다. 실험 결과, 목표자극에 대한 반응시간은 두 조건에서 유의하게 다르지 않았으며, 양반응 조건에서 관련자극에 대한 반응시간은 무관련자극에 대한 반응시간보다 유의하게 더 길었다. 관련자극에 대한 P300 진폭과 무관련자극에 대한 P300 진폭은 모두 양반응 조건에 비교하여 일반응 조건에서 더 작았다. 그러나 관련자극과 무관련자극 간의 P300 진폭 차이는 두 실험조건에서 유의한 차이가 나타나지 않았으며, 거짓말 탐지율도 두 조건 간에 큰 차이가 없었다. 이러한 결과에 근거하여 버튼 반응이 자극 간 제시간격이 짧은 P300 숨긴정보검사에 미치는 영향을 논의하였다.
        4,000원
        9.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, p-type Bi−Sb−Te alloys powders are prepared using gas atomization, a mass production powder preparation method involving rapid solidification. To study the effect of the sintering temperature on the microstructure and thermoelectric properties, gas-atomized powders are consolidated at different temperatures (623, 703, and 743 K) using spark plasma sintering. The crystal structures of the gas-atomized powders and sintered bulks are identified using an X-ray diffraction technique. Texture analysis by electron backscatter diffraction reveals that the grains are randomly oriented in the entire matrix, and no preferred orientation in any unique direction is observed. The hardness values decrease with increasing sintering temperature owing to a decrease in grain size. The conductivity increases gradually with increasing sintering temperature, whereas the Seebeck coefficient decreases owing to increases in the carrier mobility with grain size. The lowest thermal conductivity is obtained for the bulk sintered at a low temperature (603 K), mainly because of its fine-grained microstructure. A peak ZT of 1.06 is achieved for the sample sintered at 703 K owing to its moderate electrical conductivity and sustainable thermal conductivity.
        4,000원
        10.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A thin film thermoelectric generator that consisted of 5 p/n pairs was fabricated with 1 μm-thick n-type In3Sb1Te2 and p-type Ge2Sb2Te5 deposited via radio frequency magnetron sputtering. First, 1 μm-thick GST and IST thin films were deposited at 250 oC and room temperature, respectively, via radio-frequency sputtering; these films were annealed from 250 to 450 oC via rapid thermal annealing. The optimal power factor was found at an annealing temperature of 400 oC for 10 min. To demonstrate thermoelectric generation, we measured the output voltage and estimated the maximum power of the n-IST/ p-GST generator by imposing a temperature difference between the hot and cold junctions. The maximum output voltage and the estimated maximum power of the 1 μm-thick n-IST/p-GST TE generators are approximately 17.1 mV and 5.1 nW at ΔT = 12K, respectively.
        4,000원
        11.
        2017.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we used I-V spectroscopy, photoconductivity (PC) yield and internal photoemission (IPE) yield using IPE spectroscopy to characterize the Schottky barrier heights (SBH) at insulator-semiconductor interfaces of Pt/HfO2/p-type Si metal-insulator-semiconductor (MIS) capacitors. The leakage current characteristics of the MIS capacitor were analyzed according to the J-V and C-V curves. The leakage current behavior of the capacitors, which depends on the applied electric field, can be described using the Poole-Frenkel (P-F) emission, trap assisted tunneling (TAT), and direct tunneling (DT) models. The leakage current transport mechanism is controlled by the trap level energy depth of HfO2. In order to further study the SBH and the electronic tunneling mechanism, the internal photoemission (IPE) yield was measured and analyzed. We obtained the SBH values of the Pt/HfO2/p-type Si for use in Fowler plots in the square and cubic root IPE yield spectra curves. At the Pt/HfO2/p-type Si interface, the SBH difference, which depends on the electrical potential, is related to (1) the work function (WF) difference and between the Pt and p-type Si and (2) the sub-gap defect state features (density and energy) in the given dielectric.
        4,000원
        12.
        2016.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        P-type ternary Bi0.5Sb1.5Te3 alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300- 400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.
        4,000원
        13.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        HPGe 검출기를 이용하여 밀도가 다양한 환경시료에 대한 정밀 분석시 정확한 분석을 위해서는 밀도보정인자가 필요하다. 밀도에 대한 보정인자를 구하기 위해서 본 연구에서는 몬테카를로 코드인 MCNPX 코드를 사용하여 크리스털의 높이, 지름 및 코어의 크기와 같은 특성이 다른 세 대의 p-type HPGe 검출기를 모사하고 밀도 1 g/cm3의 교정용 표준시료를 이용하여 모 델링을 검증하였다. 검증을 통하여 모델링을 확정한 후 0.3, 0.6, 0.9, 1.0, 1.2, 1.5 g/cm3 밀도를 가진 샘플에 대한 효율을 시 뮬레이션하고 밀도보정인자를 도출하였다. 도출된 각 검출기에 대한 밀도보정인자를 비교하였을 때 전 에너지 범위에서 그 차이가 거의 없음을 확인하였으며 이는 검출기의 크리스털과 같은 주요 특성에 대해 밀도보정인자가 독립적임을 의미한다.
        4,000원
        14.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, in order to improve the efficiency of n-type monocrystalline solar cells with an Alu cell structure, we investigate the effect of the amount of Al paste in thin n-type monocrystalline wafers with thicknesses of 120 μm, 130 μm, 140 μm. Formation of the Al doped p+ layer and wafer bowing occurred from the formation process of the Al back electrode was analyzed. Changing the amount of Al paste increased the thickness of the Al doped p+ layer, and sheet resistivity decreased; however, wafer bowing increased due to the thermal expansion coefficient between the Al paste and the c-Si wafer. With the application of 5.34 mg/cm2 of Al paste, wafer bowing in a thickness of 140 μm reached a maximum of 2.9 mm and wafer bowing in a thickness of 120 μm reached a maximum of 4 mm. The study’s results suggest that when considering uniformity and thickness of an Al doped p+ layer, sheet resistivity, and wafer bowing, the appropriate amount of Al paste for formation of the Al back electrode is 4.72 mg/cm2 in a wafer with a thickness of 120 μm.
        4,000원
        15.
        2014.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        When sunlight irradiates a boron-doped p-type solar cell, the formation of BsO2i decreases the power-conversion efficiency in a phenomenon named light-induced degradation (LID). In this study, we used boron-doped p-type Cz-Si solar cells to monitor this degradation process in relation to irradiation wavelength, intensity and duration of the light source, and investigated the reliability of the LID effects, as well. When halogen light irradiated a substrate, the LID rate increased more rapidly than for irradiation with xenon light. For different intensities of halogen light (e.g., 1 SUN and 0.1 SUN), a lower-limit value of LID showed a similar trend in each case; however, the rate reached at the intensity of 0.1 SUN was three times slower than that at 1 SUN. Open-circuit voltage increased with increasing duration of irradiation because the defect-formation rate of LID was slow. Therefore, we suppose that sufficient time is needed to increase LID defects. After a recovery process to restore the initial value, the lower-limit open-circuit voltage exhibited during the re-degradation process showed a trend similar to that in the first degradation process. We suggest that the proportion of the LID in boron-doped p-type Cz-Si solar cells has high correlation with the normalized defect concentrations (NDC) of BsO2i. This can be calculated using the extracted minority-carrier diffusion-length with internal quantum efficiency (IQE) analysis.
        4,000원
        16.
        2013.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the detection properties of nitrogen monoxide (NO) gas using transparent p-type CuAlO2 thin film gas sensors. The CuAlO2 film was fabricated on an indium tin oxide (ITO)/glass substrate by pulsed laser deposition (PLD), and then the transparent p-type CuAlO2 active layer was formed by annealing. Structural and optical characterizations revealed that the transparent p-type CuAlO2 layer with a thickness of around 200 nm had a non-crystalline structure, showing a quite flat surface and a high transparency above 65 % in the range of visible light. From the NO gas sensing measurements, it was found that the transparent p-type CuAlO2 thin film gas sensors exhibited the maximum sensitivity to NO gas in dry air at an operating temperature of 180˚C. We also found that these CuAlO2 thin film gas sensors showed reversible and reliable electrical resistance-response to NO gas in the operating temperature range. These results indicate that the transparent p-type semiconductor CuAlO2 thin films are very promising for application as sensing materials for gas sensors, in particular, various types of transparent p-n junction gas sensors. Also, these transparent p-type semiconductor CuAlO2 thin films could be combined with an n-type oxide semiconductor to fabricate p-n heterojunction oxide semiconductor gas sensors.
        4,000원
        17.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경남농업기술원 화훼육종연구소에서 1997년부터 교 배조합 육성을 위하여 국내의 재배농가와 종묘업체로 부터 유전자원을 수집하였다. 핑크 미니 다화성계 육종 을 위해 교배모본으로 ‘Banya Nabi’를 부본으로 ‘Pink Gem Stripe’를 이용하여 2001년에서부터 2009 년에 걸쳐 교배 및 계통선발육종을 하였다. 선발된 우 수계통을 대상으로 2007년부터 2009년까지 3회의 특 성 검정을 거쳐서 호접란 신품종 ‘리틀핑크스타’를 개 발하였다. ‘리틀핑크스타’는 연한핑크 계의 꽃을 가진 소륜계 품종으로 화형도 우수하며 화경의 분지성이 높 아 화수가 많고 전체 볼륨감이 좋다. ‘리틀핑크스타’는 생육속도도 빠르고 재배하기가 용이하였으며 평균 꽃 수명 또한 55일 이상으로 길다. 연한핑크계 소륜 품종 으로는 시장성이 높고 소비자기호도가 높을 것으로 판 단되어 2010년 국립종자원에 품종출원하여 2011년 12 월에 품종등록을 완료하였다.
        3,000원
        18.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electro-deposition of compound semiconductors has been attracting more attention because of its ability torapidly deposit nanostructured materials and thin films with controlled morphology, dimensions, and crystallinity in a cost-effective manner (1). In particular, low band-gap A2B3-type chalcogenides, such as Sb2Te3 and Bi2Te3, have been extensivelystudied because of their potential applications in thermoelectric power generator and cooler and phase change memory.Thermoelectric SbxTey films were potentiostatically electrodeposited in aqueous nitric acid electrolyte solutions containingdifferent ratios of TeO2 to Sb2O3. The stoichiometric SbxTey films were obtained at an applied voltage of −0.15V vs. SCE usinga solution consisting of 2.4mM TeO2, 0.8mM Sb2O3, 33mM tartaric acid, and 1M HNO3. The stoichiometric SbxTey filmshad the rhombohedral structure with a preferred orientation along the [015] direction. The films featured hole concentrationand mobility of 5.8×1018/cm3 and 54.8cm2/V·s, respectively. More negative applied potential yielded more Sb content in thedeposited SbxTey films. In addition, the hole concentration and mobility decreased with more negative deposition potential andfinally showed insulating property, possibly due to more defect formation. The Seebeck coefficient of as-deposited Sb2Te3 thinfilm deposited at −0.15V vs. SCE at room temperature was approximately 118µV/K at room temperature, which is similarto bulk counterparts.
        3,000원
        19.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped SnO2) etc., which have been widely used in LCD,touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realizetransparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additionalprerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical band-gap more than ~3.0eV. In this study, single-phase transparent semiconductor of SrCu2O2, which shows p-type conductivity, havebeen synthesized by 2-step solid state reaction at 950oC under N2 atmosphere, and single-phase SrCu2O2 thin films of p-typeTCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at 500oC, 1%H2/(Ar+H2) atmosphere. 3% H2/(Ar+H2) resulted in formation of second phases. Hall measurements confirmed the p-typenature of the fabricated SrCu2O2 thin films. The electrical conductivity, mobility of carrier and carrier density 5.27×10−2S/cm,2.2cm2/Vs, 1.53×1017/cm3 a room temperature, respectively. Transmittance and optical band-gap of the SrCu2O2 thin filmsrevealed 62% at 550nm and 3.28eV. The electrical and optical properties of the obtained SrCu2O2 thin films deposited by RFmagnetron sputtering were compared with those deposited by PLD and e-beam.
        4,000원
        20.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The p-type thermoelectric compounds of based doped with 3wt% Te were fabricated by a combination of rapid solidification and spark plasma sintering (SPS) process. The effect of holding time during spark plasma sintering (SPS) on the microstructure and thermoelectric properties were investigated using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermoelectric properties. The powders as solidified consisted of homogeneous thermoelectric phases. The thermoelectric figure of merit measured to be maximum () at the SPS temperature of .
        4,000원
        1 2 3