Carbon contamination from the binder resin is an inherent problem with the metal powder injection molding process. Residual carbon in the W-Cu compacts has a strong impact on the thermal and electric properties. In this study, uncertainty was quantified to evaluate determination of carbon in a W-15%Cu MIM body by the combustition method. For a valid generalization about this evaluation, uncertainty scheme applied even to the repeatability as well as the uncertainty sources of each analyse step and quality appraisal sources. As a result, the concentration of carbon in the W-Cu part were measured as 0.062% with expanded uncertainty of 0.003% at 95% level. This evaluation example may be useful to uncertainty evaluation for other MIM products.
W-Cu alloy was very useful material for a heat sink, high electric contact and EDM electrode. Powder injection molding (PIM) is the optimum manufacturing technology to provide W-Cu components with low-cost and high-volume. We used various compositions of tungsten coated copper powders (W-Cu with 10 to 80 wt-% of copper) to manufacture W-Cu components by PIM. The optimum mixing, injection molding, debinding and sintering conditions to provide the high performance W-Cu components were investigated. The thermal and mechanical properties of W-Cu parts by PIM were measured. Finally, we can verify the high performance of W-Cu components by PIM with the tungsten coated copper.
Tungsten coatings with different interlayers onto the oxygen-free copper substrates were fabricated by atmosphere plasma spraying. The effects of different interlayers of NiCrAl, NiAl and W/Cu on bonding strength were studied. SEM, EDS and XRD were used to investigate the photographs and compositions of these coatings. The tungsten coatings with different initial particle sizes resulted in different microstructures. Oxidation was not detected in the tungsten coating, but in the interlayer, it was found by both XRD and EDS. The tungsten coating deposited directly onto the copper substrate presented higher bonding strength than those with different interlayers.
Thermal management technology is a critical element in all new chip generations, caused by a power multiplication combined with a size reduction. A heat sink, mounted on a base plate, requires the use of special materials possessing both high thermal conductivity (TC) and a coefficient of thermal expansion (CTE) that matches semiconductor materials as well as certain packaging ceramics. In this study, nano tungsten coated copper powder has been developed with a wide range of compositions, 90W-10Cu to 10W-90Cu. Powder technologies were used to make samples to evaluate density, TC, and CTE. Measured TC lies among theoretical values predicted by several existing models.
Processing of W-Cu graded materials from attritor-milled W-CuO mixtures is described. The powder reduction steps are investigated by TG and XRD analyses and by microstructural observations (SEM, TEM). Sintering of reduced powder with different compositions is analysed by dilatometry. Sintering behaviour of the graded component processed by co-compaction of a 10/20/30wt%Cu multi-layer material is briefly discussed. Liquid Cu migration is observed and smooths the composition gradient. Perspectives to control this migration are discussed.
The reduction mechanism of the composite powders mixed with and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20 to 30. Then, powder is reduced to W via W and W at higher temperature region. Finally, the gaseous phase of formed by reaction of with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and powder.der.
Copper-10 wt. % tungsten alloyed powder was obtained by co-reduction of mixed tungsten-trioxide and copper oxide powders at 973 K for 7.2 Ks. In the alloy obtained by pressure-assisted sintering of this co-reduced powder, ultra fine tungsten particles (about 100nm) were dispersed uniformly in the copper matrix. At room temperature, the hardness of this alloy was Hv151 and the electrical conductivity was 85% IACS. After annealing at 1173 K for 3.6 Ks, the hardness and electrical conductivity were Hv147 and 84% IACS, respectively, and were same as before annealing. It was confirmed that the hardness and electrical conductivity of this alloy were hardly influenced by annealing condition since the microstructure of this alloy is highly stabilized.