간행물

한국분말야금학회 학술대회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

한국분말야금학회 2006년도 춘계학술대회논문집 (2006년 4월) 443

321.
2006.04 구독 인증기관·개인회원 무료
The present investigation has been performed on full densification behavior and mechanical property of the powder injection molded Fe-8wt%Ni nanoalloy powder. The net shaping process of the nanopowder was conducted by powder injection molding (PIM) process. The key-process for fabricating fully densified net-shaped nanopowder by pressureless sintering is an optimal control of agglomerate size of nanopowder. Enhanced mechanical property of PIMed Fe-Ni nanopowder is explained by grain refinement and microstructural uniformity.
322.
2006.04 구독 인증기관·개인회원 무료
The MIM technology is an alternative process for fabricating near net shape components that usually uses gas atomised powders with small size (< 20 μm) and spherical shape. In this work, the possibility of changing partially or totally spherical powder by an irregular and/or coarse one that is cheaper than the former was investigated. In this way, different bronze 90/10 components were fabricated by mixing three different types of powder, gas and water atomised with different particle sizes, in order to evaluate how the particle shape and size affect the MIM process.
323.
2006.04 구독 인증기관·개인회원 무료
This study is focused on the manufacturing technique of powder injection molding of watch case made from zirconia powder. A series of computer simulation processes were applied to the prediction of the flow pattern in the inside of the mould and defects as weld-line. The material properties of melted feedstock, including the PVT graph and thermal viscosity flowage properties were measured to obtain the input data to be used in a computer simulation. Also, a molding experiment was conducted and the results of the experiment showed a good agreement with the simulation results for flow pattern and weld line location. On the other hand, gravity and inertia effects have an influence on the velocity of the melt front because of the high density of ceramic powder particles during powder injection molding in comparison with polymer's injection molding process. In the experiment, the position of the melt front was compared with the upper gate and lower gate positions. The gravity and inertia effect could be confirmed in the experimental results.
324.
2006.04 구독 인증기관·개인회원 무료
In this communication the development of a new metal injection moulding (MIM) system for duplex stainless steels is presented. The metal powders were prepared by premixing 316L and 430L stainless steels gas atomised powders in a ratio of 50:50. The binder used to prepare the feedstock was composed by HDPE and paraffin wax. Torque measurements of the mixture indicated that the maximum amount of metal was 68 vol%. The polymeric part was driven off by thermal debinding and the sintering was performed in low vacuum. The final densities were close to the theoretical ones.
325.
2006.04 구독 인증기관·개인회원 무료
Correlations between in-flight particle, splat and coating microstructure of thermally sprayed Ni20Cr were investigated. Flame spray and arc spray systems were employed for spraying Ni20Cr powder and Ni20Cr wire, respectively. The results showed that the arc spray process produced a broader size distribution for both in-flight particles and splats compared to flame process. Flower-like splat morphology was obtained from the arc spray whereas a pancake-like splat was obtained by flame spray. Ni20Cr coating sprayed by arc process had a denser microstructure, lower porosity and better adhesion at the interface.
326.
2006.04 구독 인증기관·개인회원 무료
Tungsten coatings with different interlayers onto the oxygen-free copper substrates were fabricated by atmosphere plasma spraying. The effects of different interlayers of NiCrAl, NiAl and W/Cu on bonding strength were studied. SEM, EDS and XRD were used to investigate the photographs and compositions of these coatings. The tungsten coatings with different initial particle sizes resulted in different microstructures. Oxidation was not detected in the tungsten coating, but in the interlayer, it was found by both XRD and EDS. The tungsten coating deposited directly onto the copper substrate presented higher bonding strength than those with different interlayers.
329.
2006.04 구독 인증기관·개인회원 무료
In this study, multi-ply SiC fiber reinforced Ti-6Al-4V composites have been manufactured by plasma spraying and subsequent vacuum hot pressing. Two different sizes of Ti-6Al-4V feedstock powders were used for plasma spraying to form matrix. A considerable amount of oxygen was incorporated into as-sprayed Ti matrix during plasma spraying, and consequently caused matrix embrittlement. The use of coarse-sized feedstock powder reduced oxygen contamination, but tended to increase fiber spacing irregularity and fiber strength degradation. Longitudinal tensile strength and ductility of the composites were mainly affected by the matrix oxygen content.
334.
2006.04 구독 인증기관·개인회원 무료
A connection between pulse-periodical laser radiation power and stability of liquid-metal contacts between powder particles during selective laser sintering (SLS) is determined based on analysis solving the problem of stability of liquid column in the gravity and capillary forces field. On the grounds of obtained relationships the optimization of pulse-periodical laser radiation power and SLS-process duration is realized, that allows to produce voluminous powder porous materials with pre-determined physical and mechanical properties and surface geometry. Results of metallographic investigations of powder porous materials of titanium powder produced with technological regimes calculated by means of obtained relationships are given in the work
336.
2006.04 구독 인증기관·개인회원 무료
Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer aided design, laser cladding and rapid prototyping. The advanced technology can build fully-dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" is being developed significantly. The microstructure and mechanical properties of the LMDS-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead time.
337.
2006.04 구독 인증기관·개인회원 무료
The dispersion strengthened copper alloy was attracted as thermal and electrical functional material for the high mechanical strength, high thermal stability and good conductivity of . In the present study, the focus is on the synthesis of dispersed copper alloy by spark plasma sintering process using copper oxide and titanium diboride as raw materials. The mechanical, thermal and electrical properties of sintered bodies were discussed with the sintering parameters, and developed microstructure and phase of sintered bodies.
338.
2006.04 구독 인증기관·개인회원 무료
Calcium-hexaluminate phase is known to be effective for the crack shielding due to the spinel block crystal structure. In this study, we focused to the control of morphology for good damage tolerance behavior in alumina and zirconia/calcium-hexaluminate composites. Calcium-hexaluminate composites were prepared from zirconia, alumina and calcium carbornate powders. Calcium-hexaluminate phase was obtained by the solid reaction through the formation of intermediate phase . phase showed the column type abnormal grain grown behavior composed of small blocks. Due to the typical microstructure of , alumina and zirconia/calcium-hexaluminate composites provide a well controlled crack propagation behavior.
339.
2006.04 구독 인증기관·개인회원 무료
Nanostructured Alumina - 20 vol% 3YSZ composites powder were synthesized by wet-milling technique. The starting materials were a mixture of Alumina micro-powder and 3YSZ nano-powders. Nano-crystalline grains were obtained after 24 h milling time. The nano-structured powder compacts were then processed to full density at different temperatures by high-frequency induction heat sintering (HFIHS). Effects of temperature on the mechanical and microstructure properties have been studied. composites with higher mechanical properties and small grain size were successfully developed at relatively low temperatures through this technique.
340.
2006.04 구독 인증기관·개인회원 무료
This paper concerned with SPS (spark plasma sintering), hot pressing of sinter nanometer WC-Co powder and discussed the density, hardness, microstructures and grain sizes of the alloys sintered. The results showed that the two sintered techniques could produce high density alloys and play well on the grain growth, but SPS could lower the sintering temperature and shorten sintering time. Besides, the hardness of the sintered cemented alloys that was dependent on the grain size and densification could also be improved.