이 글은 위험으로 인한 사회적 위기 상황에서 사회적 협력과 사회통합을 위한 방안으로 정부신뢰 및 사회신뢰의 함의를 살펴보고자 하였다. 현대사회는 기술의 진보, 환경, 사회구조 등이 상호작용하면서 다양한 위험과 불확실성이 증대되고 있다. 위험으로 인한 사회적 위기 상황을 극복하기 위해서는 위험과 관련되어 있 는 주체들의 협력이 필수적으로 요구된다. 신뢰, 규범 등을 토대로 하는 사회자 본은 사회적 협력을 활성화시키데 있어서 긍정적으로 영향을 미칠 수 있다. 정부 신뢰와 사회신뢰는 위기 상황에서 정책의 효율성을 높이고, 시민들의 협력을 강 화시킬 수 있다. 정부신뢰가 높으면 정부의 위기관리 정책에 시민들이 긍정적으 로 협조할 가능성이 높아져 위기 대응의 효율성이 높아진다. 또한 위기 상황에서 시민들의 협조는 시민들 간의 정보소통과도 관련이 있다. 정보기술의 발전으로 인해 위험에 대한 정보는 다양한 통로를 통해 수집되고 전달된다. 위험에 대한 정보의 신뢰는 정보를 제공하는 사람들의 신뢰와도 연결되며, 정보에 대한 신뢰 가 높으면 위기상황에 대한 사회적 협력을 높임으로써 사회통합에 긍정적인 영 향을 미치게 된다. 결과적으로 정부신뢰와 사회신뢰는 사회적 위기상황에서 사회 적 협력을 이끌어 내는 중요한 요소로 작동할 수 있다는 점에서 사회통합을 위 한 시사점을 제공하고 있으며, 나아가 국가적인 차원에서 장․단기적으로 사회자본 확충을 위한 방안이 모색되어야 할 것이다.
High-temperature oxidation of a Ni-based superalloy was analyzed with samples taken from gas turbine blades, where the samples were heat-treated and thermally exposed. The effect of Cr/Ti/Al elements in the alloy on high temperature oxidation was investigated using an optical microscope, SEM/EDS, and TEM. A high-Cr/high-Ti oxide layer was formed on the blade surface under the heat-treated state considered to be the initial stage of high-temperature oxidation. In addition, a PFZ (γ’ precipitate free zone) accompanied by Cr carbide of Cr23C6 and high Cr-Co phase as a kind of TCP precipitation was formed under the surface layer. Pits of several μm depth containing high-Al content oxide was observed at the boundary between the oxide layer and PFZ. However, high temperature oxidation formed on the thermally exposed blade surface consisted of the following steps: ① Ti-oxide formation in the center of the oxide layer, ② Cr-oxide formation surrounding the inner oxide layer, and ③ Al-oxide formation in the pits directly under the Cr oxide layer. It is estimated that the Cr content of Ni-based superalloys improves the oxidation resistance of the alloy by forming dense oxide layer, but produced the σ or μ phase of TCP precipitation with the high-Cr component resulting in material brittleness.
본 연구는 종자의 높은 유지 함량으로 인해 식・약용 및 바이오에너지 원료 소재로 활용 가치가 높은 문관과(Xanthoceras sorbifolium)의 부정아 유도를 통한 기내 재분화 기술을 개발하기 위해 수행되었다. 미성숙 종자 절편을 0.5 mg l-1 6-benzylaminopurine (BA)이 포함된 MS 배지에 치상하였을 때 부정아 유도율은 68.6%로 나타났으나, 성숙 종자 절편을 이용하였을 때 상대적으로 매우 낮은 비율(2.86%)로 유도되었다. 부정아 유도를 위해 싸이토키닌류의 종류를 달리하여 치상하였을 때 thidazuron (TDZ)과 BA가 포함된 배지에서 70% 이상이 유도되었다. 유도된 부정아의 증식을 위해서 절간을 BA와 TDZ이 혼용 처리된 배지에 치상하였을 때 최대 94.29%까지 신초 유도율이 증가되는 것을 확인하였다. 이 후 유도된 신초는 정상적인 발근과정을 거쳐 식물체로 재분화되었다. 본 연구에서 제시된 문관과의 부정아 유도 방법을 이용하여 안정적인 종묘확보에 활용될 수 있을 것이다.
In this study, the second-order Nomoto’s nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto’s nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.
This study investigates (1) the consumer characteristics of fresh-cut produce in Korea and (2) the expected taste of fresh-cut produce. To accomplish the first goal of this study, food purchase data from household panels collected by the Rural Development Administration from 2017 to 2020 were used. Further, an online survey was conducted about the expected taste regarding fresh-cut fruits and vegetables. The results revealed that younger consumers with more expenses on fresh fruits tend to buy more fresh-cut fruits. Similarly, younger consumers with more expenses on fresh vegetables and higher household incomes tend to purchase more fresh-cut vegetables. Furthermore, consumers expect more convenience from fresh-cut apples but less tastiness from fresh-cut apples than whole apples.
본 연구에서는 투과 유량 모델을 개발하기 위하여, 시간, 막 전후의 압력 차, 회전 속도, 막의 기공 크기, 동점도, 농도 및 공급 유체의 밀도 등 7개의 입력 변수에 기반한 두 종류(ANN 및 SVM) 인공지능 기법을 이용하였다. 시행착오법과 실험데이터와 예측 데이터 간의 결정 계수(R2) 와 평균절대상대편차(AARD)를 포함한 두 가지 통계 변수를 통해 최적의 모델 을 선정하였다. 최종적으로 얻어진 결과에서 최적화된 ANN 모델이 R2 = 0.999 및 AARD% = 2.245인 투과 플럭스 예측 정 확도를 보여서, R2 = 0.996 및 AARD% = 4.09의 정확도를 보인 SVM 모델에 비해 더 정확함을 알 수 있었다. 또한, ANN 모델은 SVM 방식에 비해 투과 유속을 예측하는 능력도 더 높은 것으로 나타났다.
The global demand for raw lithium materials is rapidly increasing, accompanied by the demand for lithiumion batteries for next-generation mobility. The batch-type method, which selectively separates and concentrates lithium from seawater rich in reserves, could be an alternative to mining, which is limited owing to low extraction rates. Therefore, research on selectively separating and concentrating lithium using an electrodialysis technique, which is reported to have a recovery rate 100 times faster than the conventional methods, is actively being conducted. In this study, a lithium ion selective membrane is prepared using lithium lanthanum titanate, an oxide-based solid electrolyte material, to extract lithium from seawater, and a large-area membrane manufacturing process is conducted to extract a large amount of lithium per unit time. Through the developed manufacturing process, a large-area membrane with a diameter of approximately 20 mm and relative density of 96% or more is manufactured. The lithium extraction behavior from seawater is predicted by measuring the ionic conductivity of the membrane through electrochemical analysis.
In order to apply to high-nickel cathodes for high-capacity and stability enhancement of lithium-ion batteries, the characteristics of the coating film were reviewed using the conventional nickel plating method. The surface morphology of the plating layer and the measurement of the surface roughness were analyzed according to scan size and rate using the contact mode of Atomic Force Microscopy. The hydrogen ion concentration (pH) of the electrolyte played an important role in shaping the metal ion plating. As the overpotential of the surface increased during plating, the crystals grew in a direction other than the main crystal growth direction. The increase in on-time during pulse plating appears to result in coarse particles as much of the applied current is consumed by the reduction of hydrogen ions, resulting in lower current efficiency. From the AFM image, it was confirmed that the blackening of the plated film was due to a partial overvoltage phenomenon during electrolytic degreasing. In order to be used as a high-nickel cathode, it seems that the current must be uniformly distributed on the surface of the substrate during plating.
This study was conducted to evaluate the filtration performance according to the feed temperature composed of NaCl and the operating pressure of the brackish water reverse osmosis (BWRO) process. The temperature is known that decides the filtration performance of reverse osmosis (RO). It is noted that temperature increase activates the permeate of salts due to augment of diffusivity and mass transfer. Filtration of the lab-scale RO system was performed with constant pressure and the constant flow was simulated. The salt rejection measured by the concentration of the feed and permeate was compared with water permeability and salt permeability in the conditions containing various temperatures (5, 10, 15, 20, 25, and 30℃) and pressures (10, 12, 15, and 18 bar). An increase in feed temperature from 5 °C to 30 °C caused a 4.65% decrease in salt rejection in CSM, due to an increase in salt permeability (4.06 times) rather than an increase in water permeability (2.62 times). Specific energy consumption (SEC) was calculated by using an electricity meter set in the RO system. It was expected that the SEC by the increases in temperature and pressure decreased due to the viscosity decline of the feed and the permeate flux augment, respectively. The SEC decreased by 63.4% in CSM and by 54.3% in Nittodenko when the feed temperature increased from 5 °C to 30 °C. It discussed how to operate the optimal RO process through the effect of temperature and operating pressure and the comparison of SEC.
High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.
There are many different types of cultivation in tomatoes for year-round production. One of them, semi-forcing cultivation is characterized by growing seedlings in winter season. If grafted seedlings are used in winter season that energy cost can be reduced, because they have tolerance to cold stress. This study was conducted to analyze the rootstock performance by measuring the growth, yield, and leaf-macronutrient content of cherry tomatoes grown in semi-forcing hydroponics. Three domestic rootstocks ‘HSF4’, ‘21LM’, ‘21A701’, and a control cultivar ‘B-blocking’ were grafted onto jujube-shaped cherry tomato (Lycopersicon esculentum L.) commercial cultivar ‘Nonari’. The total yield per plant with grafted cherry tomato ‘21A701’ was 3,387g, which was 11%, 22% and 24% higher than the yield with ‘B-blocking’, non-grafted one and ‘HSF4’. The stem diameter of ‘21A701’ was thick with 8.26mm, whereas non-grafted one was thin with 7.23mm at 160 days after transplanting. The flowering position of ‘21LM’ was 34% and 47% higher than the flowering position of ‘B-blocking’ and non-grafted one at 153 days after transplanting. The NO3-N concentration in petiole sap of ‘21LM’ was the highest with 1,746mg·L-1 and non-grafted one and ‘HSF4’ were the lowest with 1,252mg·L-1 and 1,245mg·L-1 at 167 days after transplanting. The results indicated that rootstock/scion combinations in cherry tomatoes can affect the plant growth, yield, and the concentration of different NO3-N in leaves at the late growth stage. Both ‘21A701’ and ‘21LM’ have vigorous root system, which influence the growth and yield increased.
The column-tree type steel beam-column connections are commonly used in East Asian countries, including Korea. The welding detail between the stub beam and column is similar to the WUF-W connection; thus, it can be expected to have sufficient seismic performance. However, previous experimental studies indicate that premature slip occurs at the friction joints between the stub and link beams. In this study, for the accurate seismic performance evaluation of column-tree type moment connections, a moment-slip model was proposed by investigating the previous test results. As a result, it was found that the initial slip occurred at about 25% of the design slip moment strength, and the amount of slip was about 0.15%. Also, by comparing the analysis results from models with and without the slip element, the influence of slip on the performance of overall beam-column connections was examined. As the panel zone became weaker, the contribution of slip on overall deformation became greater, and the shear demand for the panel zone was reduced.
A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames’ maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.
In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.
This study investigated variables for improving adhesive strength using laser surface treatment when bonding dissimilar materials using adhesives. adhesive strength analysis was performed for CFRP and Al6061 by laser irradiation intensity, and surface roughness was measured to analyze the related results. In the case of CFRP, the adhesive strength was good when the surface was not treated. In the case of Al6061, the adhesive strength was 25 MPa when the surface was treated with 20W, the maximum output of the laser surface treatment equipment, and the adhesive strength was improved by 125% compared to the untreated specimen. In addition, by measuring the surface roughness in the experiment, it was confirmed that the higher the surface roughness, the better the adhesive strength.
In this paper, the mechanical properties according to the rCF weight percent(10, 20, 30, 40, 50wt%) of the rCFRP specimen were evaluated and analyzed. First, to prepare rCFRP specimens, pellets were prepared according to the type of weight percent, and rCFRP tensile specimens according to ASTM D638 were prepared using an injection molding machine. Tensile tests were performed on each of 10 specimens according to weight percent conditions, and tensile strength and modulus of elasticity were calculated. For a detailed analysis of the correlation between the internal structure of the specimen and the mechanical properties, the weight percent to the constituent materials of the rCFRP specimen was calculated using mCT and used for the analysis of mechanical properties. For a more detailed analysis, a detailed analysis of the mechanical properties of rCFRP was performed through the fracture surface analysis of the specimen using FE-SEM.
일반적으로 부유식 해상풍력발전 에너지의 수급성과 효율을 극대화하기 위해서는 하부구조물의 파랑 감쇠로 인한 운동을 저 감시키는 것이 중요하다. 선행 연구들에 따르면 파도 중 하부구조물에 설치된 감쇠판에 의해서 발생한 와류점성으로 인해 운동 응답이 감소되는 것으로 나타났다. 본 연구에서는 5MW급 반잠수식 OC5 플랫폼과 감쇠판이 부착된 두가지 플랫폼을 설계하고, 와류점성으로 인 한 운동저감효과를 확인하기 위해 자유감쇠실험과 수치계산을 수행하였다. 모형시험 결과로 낙하 높이를 30 mm, 40 mm, 50 mm에서의 상하 자유감쇠실험을 수행하였을 때 OC5 플랫폼 대비 두 가지의 형태의 감쇠판이 부착된 플랫폼이 상대적으로 운동감쇠성능이 향상되었다. 모형시험과 수치계산 결과에서 형상화한 감쇠판 모델(KSNU Plate 1, KSNU Plate 2)들이 각각 OC5 대비 상하운동 진폭이 1.1배, 1.3배 각각 감소했으며, KSNU Plate 2 플랫폼은 KSNU Plate 1 플랫폼보다 OC5 대비 약 2배 감쇠성능이 좋아진 것으로 나타났다. 본 연구에서는 감쇠 판의 면적과 와류점성이 상하동요의 감쇠율과 밀접한 관련을 보여준다.
본 연구는 2015년 5월부터 2016년 12월까지 전라남도 완도군 소안도 일대에서 해마의 서식지 특성 및 산란생태를 밝히기 위해 조사하였다. 해마가 서식하는 조사지점은 주로 거머리말 개체군의 초지가 형성되었다. 거머리말 생육밀도 와 생물량(Mean±SE)은 각각 춘계(5월)에 136±14.4shoots/㎡, 489.8g DW/㎡로 가장 높았고, 생육밀도는 추계(10월)에 93±7.0shoots/㎡, 생물량은 동계(2월)에 122.3g DW/㎡로 가장 낮았다. 본 연구 기간 동안 다이빙과 족대 조사를 통해 293개체의 해마가 확인되었고 해마의 전장은 10.1~87.0㎜의 범위였다. 수정란 또는 자어를 보육중인 수컷 개체는 2015년, 2016년 모두 5월부터 출현하여 10월까지 채집되었고, 미성어의 출현은 2015년에는 7월, 2016년에는 6월부터 확인되었다. 산란기 특성을 종합적으로 분석한 결과, 해마의 산란시기는 4~10월까지로 추정되었다. 수컷의 보육낭에서 확인된 수정난수 또는 자어수는 38.3±14.8(20~76)개였고 암컷에서 확인된 포란수는 47.2±8.6(31~59)개였다. 해마의 암컷과 수컷의 성비는 1:1.7로서 수컷의 출현비율이 우세하였다.
Various social and environmental problems have recently emerged due to global climate change. In South Korea, coniferous forests in the highlands are decreasing due to climate change whereas the distribution of subtropical species is gradually increasing. This study aims to respond to changes in the distribution of forest species in South Korea due to climate change. This study predicts changes in future suitable areas for Pinus koraiensis, Cryptomeria japonica, and Chamaecyparis obtusa cultivated as timber species based on climate, topography, and environment. Appearance coordinates were collected only for natural forests in consideration of climate suitability in the National Forest Inventory. Future climate data used the SSP scenario by KMA. Species distribution models were ensembled to predict future suitable habitat areas for the base year (2000-2019), near future (2041-2060), and distant future (2081-2100). In the baseline period, the highly suitable habitat for Pinus koraiensis accounted for approximately 13.87% of the country. However, in the distant future (2081- 2100), it decreased to approximately 0.11% under SSP5-8.5. For Cryptomeria japonica, the habitat for the base year was approximately 7.08%. It increased to approximately 18.21% under SSP5-8.5 in the distant future. In the case of Chamaecyparis obtusa, the habitat for the base year was approximately 19.32%. It increased to approximately 90.93% under SSP5-8.5 in the distant future. Pinus koraiensis, which had been planted nationwide, gradually moved north due to climate change with suitable habitats in South Korea decreased significantly. After the near future, Pinus koraiensis was not suitable for the afforestation as timber species in South Korea. Chamaecyparis obtusa can be replaced in most areas. In the case of Cryptomeria japonica, it was assessed that it could replace part of the south and central region.
Barnea manilensis is a bivalve which bores soft rocks, such as, limestone or mudstone in the low intertidal zone. They make burrows which have narrow entrances and wide interiors and live in these burrows for a lifetime. In this study, the morphology and the microstructure of the valve of rock-boring clam B. manilensis were observed using a stereoscopic microscope and FE-SEM, respectively. The chemical composition of specific part of the valve was assessed by energy dispersive X-ray spectroscopy (EDS) analysis. 3D modeling and structural dynamic analysis were used to simulate the boring behavior of B. manilensis. Microscopy results showed that the valve was asymmetric with plow-like spikes which were located on the anterior surface of the valve and were distributed in a specific direction. The anterior parts of the valve were thicker than the posterior parts. EDS results indicated that the valve mainly consisted of calcium carbonate, while metal elements, such as, Al, Si, Mn, Fe, and Mg were detected on the outer surface of the anterior spikes. It was assumed that the metal elements increased the strength of the valve, thus helping the B. manilensis to bore sediment. The simulation showed that spikes located on the anterior part of the valve received a load at all angles. It was suggested that the anterior part of the shell received the load while drilling rocks. The boring mechanism using the amorphous valve of B. manilensis is expected to be used as basic data to devise an efficient drilling mechanism.