검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 82

        41.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stress-strain curves are fundamental properties to study characteristics of materials. Flow stress curves of the powder materials are obtained by indirect testing methods, such as tensile test with the bulk materials and powder compaction test, because it is hard to measure the stress-strain curves of the powder materials using conventional uniax- ial tensile test due to the limitation of the size and shape of the specimen. Instrumented nanoindentation can measure mechanical properties of very small region from several nanometers to several micrometers, so nanoindentation tech- nique is suitable to obtain the stress-strain curve of the powder materials. In this study, a novel technique to obtain the stress-strain curves using the combination of instrumented nanoindentation and finite element method was introduced and the flow stress curves of Fe powder were measured. Then obtained stress-strain curves were verified by the com- parison of the experimental results and the FEA results for powder compaction test.
        4,000원
        43.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of 1~25μm. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.
        4,000원
        45.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The current standard for testing tetrodotoxin (TTX) in foodstuffs is the mouse bioassay (MBA) in Korea as in many other countries. However, this test suffers from potential ethical concerns over the use of live animals. In addition, the mouse bioassay does not test for a specific toxin thus a sample resulting in mouse incapacitation would need further confirmatory testing to determine the exact source toxin (e.g., TTX, STX, brevotoxin, etc.). Furthermore, though the time of death is proportional to toxicity in this assay, the dynamic range for this proportional relationship is small thus many samples must be diluted and new mice be injected to yield a result that falls within the quantitative dynamic range. Therefore, in recent years, there have been many efforts in this field to develop alternative assays. High performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) has been emerged as one of the most promising options. A LC-MS-MS method involves solid-phase extraction (SPE) and followed by analysis using an electrospray in the positive ionization mode and multiple reactions monitoring (MRM). To adopt LC-MS-MS method as alternative standard for testing TTX, we performed a validation study for the quantification of TTX in puffer fish. This LC-MS-MS method showed good sensitivity as limits of detection (LOD) of 0.03~0.08 μg/g and limits of quantification (LOQ) of 0.10~0.25 μg/g. The linearity (r2) of tetrodotoxin were 0.9986~0.9997, the recovery were 80.9~103.0% and the relative standard deviations (RSD) were 4.3~13.0%. The correlation coefficient between the mouse bioassay and LC/MS/MS method was higher than 0.95.
        4,000원
        46.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        3-MCPD created in manufacture process was regulated in our country about soy sauce and HVP. The latest paper reported that Bound 3-MCPD is created as intermediate. Germany common risk assesment reported that Bound 3-MCPD must be reduced because Bound 3-MCPD can be created in estimation circle when this is hydrolyzed in human body, but the data about the toxity of Bound 3-MCPD is lack. Therefore, We analysis about 209 items food such as soy sauce, seasoning food and meat-eating manufactured goods using bound 3-MCPD analysis method developed recently. As result of survey, bound 3-MCPD detected in 8 items among 44 traditional sauce (0.02~0.28ppm), 8 of soup 12 items (0.01~0.96ppm), in 22 items of sauce 60 items (0.01~0.55ppm), in 16 items of meateating manufactured foods 30 items (0.04~0.18ppm), in 20 items of snack cookies 28 items (0.09~1.43ppm), in 8 in roasted oil foods 10 items (0.04~1.22ppm), in 6 items of peanut processed food 10 items (0.06~0.25ppm), in 1 of vegetable cream 15 items (0.05ppm). Detected level was lower than the result of monitored by other countries.
        4,000원
        47.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지진 시 낙교는 교량의 기능을 상실하는 가장 심각한 피해의 하나로서 반드시 피해야 한다. 교량 받침의 파괴로 인한 낙교를 방지하기 위한 방법의 하나로서 국내에서는 받침보호장치가 많이 사용되고 있다. 교량 받침부의 옆의 빈 공간에 설치되어 상부구조로부터 전달되는 지진하중을 부담하여 받침의 파괴를 방지한다. 이러한 받침보호장치가 충분한 내진성능을 발휘하기 위해서는 받침보호장치 본체뿐만 아니라 이를 교량에 고정시키는 앵커부의 강도도 함께 확보되어야 한다. 국내에서는 이들 앵커부의 설계 방법이 확립되지 않아서 받침보호장치의 공급업체가 제공하는 설계도에 따라 시공되어 왔다. 이에 본 연구에서는 베드블록의 높이가 다른 받침보호장치를 대상으로 하여 앵커부의 성능을 실험을 통하여 확인하였고 내진성능을 확보하기 적절한 설계법을 제시하였다.
        4,000원
        48.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized SiO2 substrates followed by sputter deposition of Zn and thermal oxidation at 400˚C in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of 150-300˚C. The highest sensor responses were observed at 300˚C in ZnO film and 250˚C in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of 250˚C.
        4,000원
        49.
        2010.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A cobalt oxide - tin oxide nanocomposite based gas sensor on an SiO2 substrate was fabricated. Granular thin film of tin oxide was formed by a rheotaxial growth and thermal oxidation method using dc magnetron sputtering of Sn. Nano particles of cobalt oxide were spin-coated on the tin oxide. The cobalt oxide nanoparticles were synthesized by polymer-assisted deposition method, which is a simple cost-effective versatile synthesis method for various metal oxides. The thickness of the film can be controlled over a wide range of thicknesses. The composite structures thus formed were characterized in terms of morphology and gas sensing properties for reduction gas of H2. The composites showed a highest response of 240% at 250˚C upon exposure to 4% H2. This response is higher than those observed in pure SnO2 (90%) and Co3O4 (70%) thin films. The improved response with the composite structure may be related to the additional formation of electrically active defects at the interfaces. The composite sensor shows a very fast response and good reproducibility.
        4,000원
        50.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RC교량의 내진성능은 교각에 충분한 연성도를 제공함으로써 확보할 수 있다. 이러한 연성도는 교각의 소성힌지 영역에 적절한 횡방향철근을 배근함으로써 실현할 수 있다. 횡방향철근에 의한 횡구속력은 유효구속력으로 결정되므로 단면형상과 횡방향철근량이 지배적인 요소가 된다. 동일한 횡방향철근량을 제공하더라도 설치간격, 배치형태, 갈고리 상세 등의 차이에 의해 유효구속력에 차이가 있게 된다. 후프띠철근에 의해 횡구속력을 발휘하는 원형단면과는 달리 사각 또는 중공사각단면에서는 유효구속력을 증가시키기 위해 보강띠철근이 함께 사용된다. 이러한 보강띠철근을 어떻게 고려하느냐에 따라 횡구속된 콘크리트의 응력-변형률 관계는 달라지게 된다. 본 연구에서는 실험을 통해 후프띠철근과 함께 보강띠철근을 갖는 정사각단면 콘크리트의 응력-변형률 관계를 파악하였으며 기존의 평가식과 비교를 통해 역학적 특성을 분석하였다.
        4,000원
        51.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at 400˚C under an N2/O2 atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from 400˚C to 600˚C. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under 500˚C, while nanowire structures begin to form on the beads above 600˚C. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of 2.0 V/μm was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.
        4,000원
        52.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin films of single-wall carbon nanotubes (SWNT) with various thicknesses were fabricated, and their optical andelectrical properties were investigated. The SWNTs of various thicknesses were directly coated in the arc-discharge chamberduring the synthesis and then thermally and chemically purified. The crystalline quality of the SWNTs was improved by thepurification processes as determined by Raman spectroscopy measurements. The resistance of the film is the lowest for thechemically purified SWNTs. The resistance vs. thickness measurements reveal the percolation thickness of the SWNT film tobe ~50nm. Optical absorption coefficient due to Beer-Lambert is estimated to be 7.1×10-2nm-1. The film thickness for 80%transparency is about 32nm, and the sheet resistance is 242Ω/sq. The authors also confirmed the relation between electricalconductance and optical conductance with very good reliability by measuring the resistance and transparency measurements.
        4,000원
        53.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        내진설계의 기본적인 개념은 지진 시 요구되는 연성도 이상의 변형성능을 확보하는 것이다. 기둥의 경우 소성힌지 영역에 적절한 횡철근을 배근함으로써 이를 실현할 수 있다. 가장 경제적인 설계를 위해서는 횡구속 콘크리트의 응력-변형률 특성에 기초하여 횡철근량을 산정하는 것이다. 우리나라(도로교 설계기준)에서는 목표연성도를 단일화하여 동일한 횡철근을 제공하고 있으나 일본에서는 횡구속된 콘크리트의 응력-변형률 곡선식을 제공함으로써 경제적으로 소요 횡철근량을 산정하고 있다. 이러한 재료레벨(응력-변형도)의 특성을 사용하면 설계는 어려워지지만 보다 경제적인 설계가 가능하며 이는 성능에 기반한 내진설계의 경향과도 부합된다. 이 연구에서는 현행 도로교설계기준의 갈고리상세에 부합되는 횡철근을 배치한 부재에 대해 횡철근량을 변수로 하여 응력-변형률 실험을 수행하였다. 응력-변형률 특성을 정량적으로 평가할 수 있는 인자를 도입하여 실험결과와 기존의 콘크리트 모델식을 비교 분석하였다.
        4,600원
        54.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap(3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diodeis the representative high-power device that is currently available commercially. A field plate edge-terminated4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metalcontacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation ofthe electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ΦB) was 107V and 0.67eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition andetching method was employed, and the electrical properties of the diodes were improved. The modified SBDsshowed enhanced electrical properties, as witnessed by a breakdown voltage of 635V, a Schottky barrier heightof ΦB=1.48eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of VF=1.6V, a specific onresistance of Ron=2.1mΩ-cm2 and a power loss of PL=79.6Wcm-2.
        4,000원
        55.
        2008.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The hydrogen gas sensing properties of a zinc oxide nanowire structure were studied. Porous zinc oxide nanowire structures were fabricated by oxidizing zinc deposited on a single-wall carbon nanotube (SWNT) template. This revealed a porous ZnO-SWNT composite due to the porosity in the SWNT film. The gas sensing properties were compared with those of zinc oxide thin films deposited on SiO2/Si substrates in sensitivity and operating temperature. The composite structure showed higher sensitivity and lower operating temperature than the zinc oxide film. It showed a response even at room temperature while the film structure did not.
        4,000원
        56.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.
        4,000원
        57.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simple method to deposit carbon nanotube films uniformly on large area substrates using an arc discharge method is reported in this paper. The arc discharge method was modified to deposit carbon nanotube films in situ on the substrates. The substrates were scanned several times over the arcing point for a uniform film thickness. Deposition was carried out under variable dc bias conditions at 600 torr of H2 gas. The thickness uniformity of the single-wall carbon nanotube films as characterized by a four-point probe was within 30% deviation. The morphology and crystal quality of the single-wall carbon nanotube film were also characterized by field emission scanning electron microscopy and Raman spectroscopy.
        4,000원
        1 2 3 4 5