This study examined the quality characteristics of Makgeolli to investigate the availability of Korean sweet potato cultivars as alcoholic beverages. The following sweet potato varieties were used: Gogunmi, Daeyumi, Shingunmi, Shinyulmi, Shincheonmi, Jinyulmi, Jinhongmi, Jeungmi and Pungwonmi; their alcohol contents ranged from 12.20% to 14.20%, with the lowest value in Makgeolli made with Jeungmi and the highest value in Makgeolli made with Jinhongmi. The DPPH radical scavenging activity was in the range of 37.51~77.02%, with the lowest value in Makgeolli made with rice (control) and the highest value in Makgeolli made with Gogunmi. As a result of analyzing the aroma component of sweet potato Makgeolli, 27 kinds of aroma components were detected, and six kinds of alcohols, 13 kinds of esters, four kinds of acids, and four kinds of other compounds were found. Regarding the number of aroma compounds, Makgeolli made with Shinyulmi showed the lowest number with 14 kinds, while Makgeolli made with Pungwonmi showed the highest number with 27 kinds.
This study examined the nutrient components and measured the physicochemical properties of 23 Korean sweet potato cultivars. The proximate composition, free sugars, organic acids, and dietary fiber of sweet potato were analyzed and the water binding capacity, oil absorption and pasting characteristics were measured. The proximate composition was the highest in Happymi and was higher in colored sweet potato than in general sweet potato (p<0.05). The sucrose content was the highest among the free sugars in the general cultivars and yellow/orange colored cultivar. The major organic acids were oxalic acid, citric acid, malic acid, succinic acid, fumaric acid, and acetic acid. Oxalic acid and citric acid were high in the purple colored cultivars and malic acid was high in yellow/orange colored cultivars. Each total dietary fiber content of the general and colored cultivars was 7.51-13.94 and 13.04-16.97%, respectively, but there was no significant difference. The water binding capacity and oil absorption of Juhwangmi was high in all cultivars (p<0.05). The peak viscosity of sweet potato powder showed highest a significant difference of 12.50-1342 cP (p<0.05). The breakdown of Sincheonmi was 512, which was the highest value (p<0.05). The setback of Geonpungmi was significantly low, 6.0 (p<0.05).
Spodoptera litura (Fabricius, 1775) is considered as a serious agricultural pest, which damaged to the many crops including sweet potato (Ipomoea batatas). We investigated weekly occurrence of the Spodoptera litura (Fabricius) using pheromone trap at six study fields of three regions, Jeonnam, Korea. A total of 41,895 individuals were collected from 18th July to 23th September in 2013; Yeongamgun was collected the highest individuals (17,519), and following the Muan-gun (12,709) and Haenamgun (11,667). The seasonal occurrence of S. Litura was increased from July to September, and peak occurrence timing was in late-September. There were a positive correlation between field area and number of individuals (P=0.02, r=0.89), and a negative correlation between field area and density (p=0.02, r=-0.89). As a PCA (principal component analysis) result, adults occurrence pattern were closely related to the temperature and relative humidity during larva stage.
The most common method of vegetative propagation of virus free plantlets is the use of shoots meristem culture in solid medium culture. This study was to investigate the effect on liquid medium culture for the growth of virus-free sweetpotato plantlets. Single-nodes derived from meristem culture of sweetpotato was examined in this experiment and three sweetpotato varieties ‘Singeonmi’, ‘Sinhwangmi’, and ‘Sinjami’ was used. The growth of plnatlets was greater in liquid medium culture than that of solid medium culture after longer incubation in 3 varieties. The total fresh weight of 5 week old plantlets after planting in solid culture were 2.17 g (‘Singeonmi’), 2.49 g (‘Sinhwangmi’), and 2.18 g (‘Sinjami’), but the fresh weight in liquid medium culture was 3.87, 3.88, and 3.35 g, respectively. Leaf number of ‘Singeonmi’ and ‘Sinjami’ plantlets after 5 weeks of liquid medium culture was 21.1 and 22.6, respectively and liquid medium culture showed 3 and 6.2 more leaf number than that of solid medium culture. Plant height of ‘Sinhwangmi’ and ‘Sinjami’ plantlets after 3 weeks of liquid medium culture was 4.1 cm and 3.4 cm, respectively, and liquid medium culture showed 1.1 cm longer stem length than solid medium. Overall, liquid medium culture of sweetpotato plantlets was more effective than solid medium in terms of leaf and stem growth.
The effect of transplanting and harvesting dates on growth, yield, and quality of sweetpotato varieties was studied. Three sweetpotato varieties, Yulmi, Singeonmi, and Dahomi, were transplanted on 23 Apr., 21 May, 5 June, 15 June, 25 June, 5 July, 15 July, and 25 July. Fresh vine weight and marketable storage root yield of the three varieties were the highest in transplanting plots on 23 April and 21 May, respectively, and those tended to decrease when transplanting dates were late after May. GDD (Growing Degree Days) and cumulative radiation seemed to be related to marketable storage root yield. Number of marketable storage root per plant, average weight of marketable storage root, and marketable storage root yield were significantly different according to transplanting dates. Marketable storage root yield showed significantly positive correlations with fresh vine weight, number of marketable storage roots, and average weight of marketable storage roots. Hardness and dry matter content of storage root showed significantly positive correlations with starch content and decreased with late transplanting dates in Yulmi and Singeonmi varieties. Pasting temperature showed significantly positive correlations with soluble solid content, dry matter content, and amylose content, but it showed significantly negative correlations with breakdown. Setback was significantly different among varieties, but it was not significantly different in transplanting dates.
‘Pungwonmi’, a new sweetpotato variety, was developed for table use by Bioenergy Crop Research Institute, National Institute of Crop Science (NICS), RDA in 2014. This variety was derived from the cross between ‘Benisatsuma’ and ‘Luby3074’ in 2006. The seedling and line selections were performed from 2007 to 2009, and preliminary and advanced yield trials were carried out from 2010 to 2011. The regional yield trials were conducted at five locations from 2012 to 2014, and it was named as ‘Pungwonmi’. This variety has cordate leaf shape, and its leaves, stems, nodes, and petioles are green. Storage root of ‘Pungwonmi’ has an elliptical shape, red skin, and light orange flesh. ‘Pungwonmi’ was moderately resistant to fusarium wilt, and resistant to root-knot nematode. Dry matter content was 31.2%, and texture of steamed storage root was intermediate. Total sugar content of raw and steamed storage roots of ‘Pungwonmi’ was higher than that of ‘Yulmi’. β-carotene content of ‘Pungwonmi’ was 9.1 mg/100g DW. Yield of marketable storage root over 50 g of ‘Pungwonmi’ was 24.3 MT/ha under the early season culture, which was 46% higher than that of ‘Yulmi’. The number of marketable storage roots per plant was 2.8 and the average weight of marketable storage root was 156 g under the optimal and late season culture. Marketable storage root yield of ‘Pungwonmi’ was 24.1 MT/ha under the optimum and late season culture, which was 26% higher than that of ‘Yulmi’. (Registration No. 6428).
Geonpungmi is a new sweetpotato variety developed by Bioenergy Crop Research lnstitute in the National Institute of Crop Science (NICS) at RDA for table use in 2008. This variety was selected from the cross between Mokpo34 and Southern Queen. Two parents, Mokpo34 and Southern Queen, were crossed in 2002. Selection of elite line was performed for 2 years from 2003 to 2004. Preliminary and advanced yield trials were carried out from 2004 to 2005. The regional yield trials were conducted at six locations from 2006 to 2008. Geonpungmi has cordate leaf, greenish purple vine and petiole, elliptic storage root, dark purple skin and yellow flesh color of storage root. This variety is resistant to fusarium wilt and nematode. The starch value and total sugar content were 25.8% and 5.82%, respectively. Pasting temperature of starch in Geonpungmi was 74.7°C, and the retrogradation process is earlier than Yulmi. The average yield of storage root is 19.8 ton/ha in the regional yield trials, which is 3% lower than that of Yulmi. The number of marketable storage roots per plant was 2.6 and the average weight of one storage root was 154 g.
‘Geonhwangmi’, a new sweetpotato variety, was developed for table use by Bioenergy Crop Research Institute, National Institute of Crop Science (NICS), and RDA in 2013. This variety was derived from the cross between ‘Singeonmi’ and ‘Mokpo34’ in 2005. The seedling and line selections were performed from 2006 to 2008, preliminary and advanced yield trials were carried out from 2009 to 2010. The regional yield trials were conducted at five locations from 2011 to 2013, and it was named as ‘Geonhwangmi’. This variety has five-lobed leaf, and its leaves, stems, and petioles are green. Storage root of ‘Geonhwangmi’ has an elliptical shape, red skin, and light orange flesh. ‘Geonhwangmi’ was moderately resistant to fusarium wilt, and resistant to root-knot nematode. Dry matter content was 29.4%, and texture of steamed storage root was intermediate. Sucrose content of steamed storage root of ‘Geonhwangmi’ was higher than that of ‘Yulmi’, and steamed storage root palatability of ‘Geonhwangmi’ was better than that of ‘Yulmi’. β-carotene content of ‘Geonhwangmi’ was 3.4 mg/100g DW, which was 7.8% of ‘Juhwangmi’. Yield of marketable storage root over 50 g of ‘Geonhwangmi’ was 23.0 MT/ha under the early seasonal cultivation, which was 39% higher than that of ‘Yulmi’. The number of marketable storage roots per plant was 2.6 and the average weight of marketable storage root was 151 g under the optimal and late seasonal cultivation. Marketable storage root yield of ‘Geonhwangmi’ was 24.2 MT/ha under the optimum and late seasonal cultivation, which was 45% higher than that of ‘Yulmi’. (Registration No. 5853).
To analysis of virus free sweetpotato effect, 5 virus free sweetpotato and virus normal sweetpotato varieties were planted in 5 different regions at 2010 year. The average yields of virus free sweetpotato are showed different results according to regions. Sinjami which cultivated at Iksan were increased maximum 68% compare to normal. However, Sinjami which cultivated in Hamyang were decreased yield 11% compare to normal. Analysis of tuber formation ratio of Sinjami, Yenhwangmi, Singeonmi which cultivated in Nonsan were decreased tuber number compare to normal. However, 3 varieties were all increased on Average storage root weight and yield of marketable storage root. In the results of analysis of marketable storage root according to cultivated regions and varieties, all varieties except Sinjami which cultivated in Hamyang were increased yield. Also, quality of virus free sweetpotato were enhanced 7 to 9 compare to virus infected sweet potato which showing average 3. Contents of starch between virus free and virus infected sweetpotato were not affected by virus. Virus free sweetpotato were more increased starch products according to increased total production yield. Also, Brix° (%) was not showing difference between virus free and virus infected sweetpotatoes. In this experiment, Virus free sweetpotato are enhanced production yields and quality. Therefore, we suggested that virus free sweetpotato is one of the methods to reduce damage by sweetpotato virus.
Storage root yield of sweetpotato was decreasing owing to continuous sweetpotato cropping, debasement of soil physical properties, increasing incidence of pest and disease. This study was conducted to evaluate the changes in physicochemical properties of the soil owing to subsoiling (subsoiling to 50 cm depth), and the effect on growth and yield of sweetpotato. The subsoiling treatments included subsoiling treated every year for two years, subsoiling in the first year, and no subsoiling control. The soil physical properties measured were bulk density, hardness, porosity, three phase. Bulk density, porosity, soild (%) of three phase were improved by subsoiling in topsoil and subsoil. Main vine length and vine yield in subsoiling soil were higher than those in no subsoiling soil, but those were not significantly different. Yield of marketable storage root in subsoiling soils treated every year for two years and treated in the first year was more increased 17% and 20% than no subsoiling soil, respectively. The number of marketable storage root per plant was also higher in subsoiling soils than no subsoiling soil, but it was not significantly different. Soluble solid contents and total free sugar contents of storage root of sweetpotato were not significantly different among the treatments. These results show that improving soil physical properties by subsoiling could promote high yield of marketable storage root in continuous sweetpotato cropping field.
‘Morningwhite’ is a new sweetpotato variety developed by Mokpo Experiment Station, National Institute of Crop Science (NICS), RDA in 2007, with white flowering. This variety was selected from the cross between “Sinjami” and “Muan 10” in 2004, seedling and line selections were applied in 2005 and 2006. ‘Morningwhite’ is morning glory type flowers with white color. It has Lobed leaf, green vine and petiole, elliptic storage root, red skin and yellow flesh color of storage root. The average yield of storage root was 14.0 ton/ha. Number of storage roots over 50 gram per plant was 2.5 and the average weight of storage root was 140 gram.
‘'Morningpurple’' is a new sweetpotato variety developed by Mokpo Experiment Station, National Institute of Crop Science (NICS), RDA in 2007, for flowering. This variety was selected from the cross between Sinchunmi and Hi-dry in 2004, seedling and line selections were practiced from 2005 to 2006. ‘'Morningpurple’' has morning glory type flowers with purple color. It has triangular leaf, green with purple vine and petiole, elliptic storage root, red skin and yellow flesh color of storage root. The average yield of storage root was 15.0 ton/ha. Number of storage roots over 50 gram per plant was 2.6, and the average weight of storage root was 143 gram.
Sweetpotato fields in Korea are highly infected with virus and virus like diseases that greatly diminish both yield and quality as indicated by field observations and laboratory tests. In order to solve this problem, there is an urgent need to produce and mass propagate virus-free planting materials for distribution to the farmers. These experiments were conducted, firstly, to determine the most appropriate culture media, nutrient solution, and cutting intervals to maintain growth and vigor of tissue cultured plantleta as mother plants for propagation in insect-proof greenhouse. And as a labor saving method, the production efficiency of plug trays for rapid propagation of stem cuttings as a source of planting materials was likewise evaluated. Results showed that plants grown in medium B supplied with 0.5 and 1.0 strength of MS nutrients had high growth rate, and 20-day cutting interval was the best. 72-plug tray was better than 128-plug. Secondly, it was to develop a technique for the production of first-generation seed roots using hydroponics cultivation system. The yield of virus-free plants propagated in the non-insect proof and open-field cultivation was 2,402 kg/10a, 6% higher than those in the insect-proof cultivation, and the rate of virus re-infection was 18% higher compared to 3.3% with insect-proof cultivation. Lastly, it was to investigate the growth performance of virus free plants in farmers' field. Differences were existed in the yield depending on the variety used, but virus free plants showed an increase of 6~24% over virus infected plants.