The objectives of this study was to investigate the properties and stability of the wet noodles added to nanoemulsion as a industrial model system, and in so doing, survey practical applicability in the food industry. In order to test out these objectives, the characteristics and stability of the wet noodles added to nanoemulsion were investigated and their cooking characteristics and capsaicinoids loss were examined. As a result, the test results showed that the findings indicated that the post-cooking loss of capsaicinoids in the wet noodles added to double-layer nanoemulsion covered with chitosan was less than the losses in the wet noodles added to any other noodles. More especially, this demonstrates that the noodle added to double-layer nanoemulsion covered with chitosan scored significantly higher than the others with reference to their cooking properties, color, texture, stability for storage stability, and sensory evaluation. These results show that the findings of this study demonstrated that the noodles added to nanoemulsions could be produced as a food-grade merchandise because they could provide enhanced encapsulation capacity of capsaicinoids and higher acceptability.
The objectives of this study, which filled gaps in previous studies, were: (1) to find the optimal mixing condition of nanoemulsions containing oleoresin capsicum (OC), Tween 80, propylene glycol (PG), and sucrose monostearate (SES) by microfluidization; (2) to investigate their properties and stability depending on such factors as pH, temperature, and heating time; (3) to measure the effect of adding ascorbic acid. In order to test these objectives, the following three experiments were conducted: Firstly, in order to find the optimal mixing ratio, nanoemulsions containing OC - the mean diameter of which is smaller than 100 nm - were prepared through the process of microfluidization; and their mean particle size, zeta potential, and capsaicinoids were measured. The test results indicated that the mixing ratio at OC : Tween 80 : PG + water(1:2) = 1 : 0.2 : 5 was optimal. Secondly, the properties and stability of nanoemulsions were investigated with varying parameters. The test results illustrated that single-layer nanoemulsions and double-layer nanoemulsions coated with alginate were stable, irrespective of all the parameters other than/except for pH 3. Thirdly, the properties of nanoemulsions were then analyzed according to the addition of ascorbic acid. The results demonstrated that the properties of single-layer nanoemulsions were not affected by addition of ascorbic acid. In case of alginate double-layer nanoemulsions, the particle size was reduced, and zeta potential increased with the addition of ascorbic acid. In conclusion, the demonstrated stability of various nanoemulsions under the different conditions in the present study suggests that these findings may constitute a basis in manufacturing various food-grade products which use nanoemulsions-and indicate that food nanoemulsions, if adopted in the food industry, have the potential to satisfy both the functionality and acceptability requirements necessary to produce commercially marketable food-grade products.
본 연구는 구리 아연 금속합금의 산화 환원 반응과 합성 알루미늄 실리케이트의 흡착 반응을 이용한 폐수 중 중금속 처리에 관한 연구이다. 극세사 형태로 제조된 구리 아연 금속합금이 수용액 중에 서 산화 환원반응에 의해 아연보다 이온화 경향이 작은 중금속은 환원 처리되고, 이온화 된 아연 및 미 반응 중금속은 흡착 처리하여 제거하는 연구이다. 극세사 형태로 제조된 금속합금 물질은 표면적이 커서 1회 처리만으로도 반응 평형에 도달하게 하여 효율이 높은 것으로 나타났다. 크롬(Cr+3)은 redox 반응 1 회 처리만으로도 100.0 % 제거 되었으며, 수은은 98.0 %, 주석 92.0 %, 구리는 91.4 % 정도 제거되었 다. 카드뮴, 니켈, 납도 각각 40.0 %, 50.0 %, 58.0 %가 제거 되었다. 크롬(Cr+3)은 아연과 이온화 경향 차이가 거의 없지만 제거 효율이 높은 것으로 나타났는데 이는 3가 크롬은 이온 상태로 존재하면 redox 반응에서 발생한 OH- 이온과 결합하여 수산화물 침전을 형성하는 것으로 판단된다. Redox 반응 후 증 가한 아연 및 미반응 중금속 농도를 알루미늄실리케이트를 1회 통과하여 거의 100.0 % 제거할 수 있었 다. 이는 합성 알루미늄 실리케이트의 비표면적이 크고 금속 이온의 흡착능력이 우수한 것으로 나타났으 며, 반응 후 알루미늄 이온은 증가하지 않는 것으로 보아 이온 교환이 아닌 흡착으로 아연 및 중금속 이 온들을 제거할 수 있는 것으로 나타났다.
The present study investigated the effects of processing parameters such as time (10, 20, 30, 40 min), pressure (25, 50, 75, 100 MPa), and the salinity of brine (0~10%(w/v)) on jacopever (Sebastes schlegeli Hilgendorf) in order to establish optimization of the three factors using a high hydrostatic pressure (HHP) machine. To do so, it analyzed the quality characteristics of volatile basic nitrogen (VBN), trimethylamine (TMA), total bacterial counts, dynamic viscoelasticities, and differential scanning calorimetry (DSC) properties. First, when the time increased to 40 mins, by 10 min intervals, the total bacterial counts in HHP groups under 25℃, 100 MPa, and 4%(w/v) brine were significantly decreased except for the first 10 min in comparison to the control group. In regards to DSC properties, the onset temperature (TO) of the first endothermal curve was significantly reduced. Second, when the pressure level increased up to 100 MPa by 25 MPa increments, the total bacterial counts in the HHP samples significantly decreased for 20 min at 50 MPa or higher. As the pressure increased, G′, G″ and the slope of tan δ decreased (except for 50 MPa). Third, in regards to the salinities of brine, when the HHP processing was treated at 100 MPa, 25℃ for 20 min, the total bacterial counts of all the HHP groups significantly decreased in comparison to those of the control group. A significant difference was found in the enthalpy of the second endothermic curve in the 6~10%(w/v) (except 7%(w/v)) HHP groups. Therefore, the salinity of the immersion water under the HHP condition was appropriate when it was lower than 6%(w/v). The present study demonstrated that the optimum parameter condition according to/under the condition of the microbial inhibition and economic effects using an HHP would be the reaction time for 20 min, reaction pressure at 100 MPa, and the salinity of 4%(w/v) brine.
To develop and industrialize functional foods containing peanut sprout extract (PSE) and powder (PSP), the present study investigated the quality characteristics and antioxidant effects of breads prepared with 0, 0.5, 1, 2, 2.5, 5, 7.5, and 10% PSE and PSP. The expansion ratio of the dough, the quality characteristics such as volume, weight, specific volume, baking loss, color, texture, and sensory preference were evaluated. There were significant differences in the bread volume and specific volume among the control, PSE and PSP groups (p<0.001). Additionally, the weight and baking loss were decreased with an increasing amount of PSP (p<0.001). As the amount of PSE and PSP were increased, the L value of the crumb decreased, whereas the a and b values of the crumb significantly increased (p<0.001), suggesting that the crumb color of the bread may be significancy (p<0.001). As the amount of PSE and PSP increased, the hardness of bread significantly and rapidly increased from 5%. Meanwhile, there was no significance in springiness among the control, PSE and PSP groups. The total resveratrol content and DPPH free radical-scavenging activity of the bread significantly increased depending on the amounts of PSE and PSP (p<0.001). In the overall acceptance test, no significant differences were observed in the color, flavour, or texture, however, the taste and overall acceptance were significantly decreased between the control and the PSE group. All the sensory characteristics in the PSP group were significantly reduced compared with the control. Considering the above results, it can be expected that the suitable amount of PSE and PSP substituted for wheat flour will be from 1.0 to 2.5%. Furthermore, follow-up studies are being carried out continuously.
This study investigated the quality characteristics and antioxidant activities of wet noodles as well as their cooking properties following the addition of peanut sprout extract (PSE) and powder (PSP), which are known to contain a significant level of resveratrol. Wet noodles were prepared with 0, 2.5, 5, 7.5 and 10% PSE and PSP. Quality characteristics such as increasing volume of noodle, water ratio, turbidity of cooking water and color, texture, and sensory evaluation were then assessed. Additionally, the total resveratrol content in the cooked noodles was analyzed by HPLC and DPPH free radical scavenging capacity. As the amount of PSE and PSP increased, the L value of wet and cooked noodles significantly decreased, whereas the a and b values increased (p<0.001). The L value of cooked noodles was significantly lower compared to wet noodles (p<0.001) whereas the a and b values were higher. For the cutting intensity properties of the cooked noodles, hardness was reduced with increasing amounts of PSE (p<0.001), and was significantly increased in proportion to the amount of PSP (p<0.05). Meanwhile, springiness was not significantly different in all groups. Total resveratrol content and free radical scavenging activity significantly increased in proportion to the amounts of PSE and PSP (p<0.001), especially in noodles containing 5%, 7.5% and 10% PSE and PSP. Finally, sensory evaluation of PSE noodle revealed that color, flavour, taste were significantly decreased (p<0.05). But there was no difference in overall acceptance among cooked noodles with 2.5% to 5% PSE comparison to the control. Sensory characteristics in the PSP noodle showed similar results. In conclusion, these findings suggest that peanut sprout extract and powder could be potentially used as functional food ingredients. In addition, up to 5% PSE and PSP can be substituted for wheat flour.
This study was performed to assess the current stock condition of elkhorn sculpin along the Uljin area in the East Sea of Korea. To assess the state of the stock, yield-per-recruit (YPR) and spawning biomass-perrecruit (SBPR) analyses were performed. Estimates of Fmax and F0.1 were 2.10/year and 0.48/year, respectively, and those of F35% and F40% were 0.66/year and 0.54/year, respectively. Current fishing mortality was estimated at 0.63/year and the current age at first capture was 2.41years. F40% was set as the target reference point of the stock. SBPR at F40% and current SBPR were estimated to be 41.85g and 37.77g, respectively. Estimated FOTY which is the fishing mortality for the overfished threshold yield was 0.49/year. The ratio of SBPR/SBPRMSY was calculated as 0.90 and that of F/FOTY was 1.05. The ratio of tc/tc opt was calculated as 1.15 and that of F/FOTY was 1.17. Therefore, the current stock condition of elkhorn sculpin along the Uljin area of Korea has not been overfished, however, it indicates that a light overfishing is going on this stock.
In this study red ginseng was extracted with ethanol and then fermented by yeasts including Lactobacillus casei and Bifidobacterium longum. Fermented red ginseng extracts(FRGE) were found to be more effective antioxidants in vitro with regards to 1, 1-diphenyl-2-picrylhydrazyl(DPPH) radical scavenging activity than red ginseng extracts(RGE). In FRGE, the contents of ginsenosides Rb1, -Rb2 and -Rc were much lower than in RGE, however, the contents of ginsenosides 20(S)-Rg3, 20(R)-Rg3 and compound K were higher than RGE. FRGE was added to Yanggaeng(0, 5, 10, 15, 20%), and physicochemical and sensory evaluations of the Yanggaeng were conducted. The L and b values of Yanggaeng with added FRGE were decreased by increasing the ratio of FRGE, while the a value was increased. Sensory evaluations for, taste, color, flavor, texture and overall acceptability of Yanggaeng with addition of FRGE (10%) were applicable for improving the Yanggaeng product.
마치현을 압출성형 및 효소분해 처리할 경우 원료에 비하여 수용성 고분자 다당류 및 아라비노갈락탄 함량이 증가하였다. 마치현 수용성 다당류 중 아라비노스와 갈락토오스의 함량이 원료 마치현보다 1.5배 증가하였으며, 람노스 함량도 2.6배 증가한 유의적인 결과를 보였다. 압출성형 처리효과로 고분자 분획(I)은 Ext I, Ext II 및 Ext III 시료에서 각각 37, 29 및 26% 정도 저분자 분획(II)으로 분자 재배열이 발생함과 동시에 66,000-74,000 Da범위의 분자량을 갖는 다당체로 구조변형 되었다. 특히, 저분자 분획의 분자량과 조성비에 있어서 압출성형 처리한 마치현은 처리하지 않은 원료에 비하여 9-13% 정도 증가하여 유의성이 있었다. 이같은 다당류의 붕괴 및 변형 정도는 압출성형 처리시 투입된 기계적 소모 에너지와 비례적인 상관성을 보였다. 압출성형 처리를 한 수용성 다당류의 경우 압출성형 처리온도 120oC 및 140oC인 경우 자유 라디칼 소거활성능이 압출성형 처리하지 않은 원료에 비하여 높게 증가하였다. 상기와 같은 마치현 유래 아라비노갈락탄의 항산화 활성 기능의 결과에 비추어볼 때 보다 폭 넓은 범위의 분자량을 갖는 분획물 제조 및 생리활성 평가실험을 지속적으로 추진한다면 새로운 기능성 식품소재로 활용할 가치가 있다고 기대된다.
천연조미소재 개발을 위하여 고압/효소분해 시스템에서 멸치 단백질의 분해 품질특성을 탐색한 결과, 최적 조건은 효소농도 0.6%, 온도 50oC, 처리시간 24시간 및 압력 50 MPa로 확인되었다. 멸치 단백질의 처리방법에 따른 품질특성을 비교한 결과, 최적조건하에서 고압/효소 처리한 멸치 가수분해물의 품질특성이 가열추출물인 대조구에 비하여 2.8배, 2배, 1.4배 증가하여 고압/효소 처리에 의한 단백질 가수분해물 생산은 가열추출법이나 고압반응에 비하여 효율적인 방법으로 나타났다. 효소종류에 따른 분해력은 복합효소로 가수분해한 경우 상업효소에 비하여 큰 증가율을 나타내어 복합효소의 분해력이 상업효소에 비하여 우수하였다. 고압/효소 처리 후의 멸치 가수분해물은 정미성 아미노산으로 알려져 있는 glutamic acid, glycine, arginine 및 alanine 등의 함량이 대조구나 압력 처리구의 유리아미노산 함량에 비하여 증가하였다. 결론적으로 고압/효소분해 처리공정은 멸치 단백질의 효과적 분해와 정미성 아미노산 생산에 효율적인 기술임을 확인하였다.
Road freezing caused by snowfall during wintertime causes traffic congestion and many accidents. To prevent such problems, we developed, in this study, a system to predict road freezing based on weather forecast data and the freezing generation modules. The weather forecast data were obtained from a high-resolution model with 1 km resolution for Jeju Island from 00:00 KST on December 1, 2017, to 23:00 KST on February 28, 2018. The results of the weather forecast data show that index of agreement (IOA) temperature was higher than 0.85 at all points, and that for wind speed was higher than 0.7 except in Seogwipo city. In order to evaluate the results of the freezing predictions, we used model evaluation metrics obtained from a confusion matrix. These metrics revealed that, the Imacho module showed good performance in precision and accuracy and that the Karlsson module showed good performance in specificity and FP rate. In particular, Cohen’s kappa value was shown to be excellent for both modules, demonstrating that the algorithm is reliable. The superiority of both the modules shows that the new system can prevent traffic problems related to road freezing in the Jeju area during wintertime.
The spatial and temporal variations of CO2 concentrations and radiative forcing (RF) due to CO2 were examined at urban center (Yeon-dong) during 2010-2015 and background sites (Gosan) during 2010-2014 on Jeju Island. The RF at the two sites was estimated based on a simplified expression for calculating RF for the study period. Overall, annual mean CO2 concentrations at the Yeon-dong and Gosan sites have gradually increased, and the concentrations were higher at Yeon-dong (401-422 ppm) than at Gosan (398-404 ppm). The maximum CO2 concentrations at the two sites were observed in winter or spring, followed by fall and summer, with higher concentrations at Yeon-dong. The RF at Yeon-dong (annual mean of up to 0.70 W/m2 in 2015) was higher than that at Gosan (up to 0.46 W/m2 in 2014), possibly because of higher CO2 concentrations at Yeon-dong resulting from population growth and human activities (e.g., fossil fuel combustion). The highest monthly mean RFs at Yeon-dong (approximately 0.92 W/m2) and Gosan (0.52 W/m2) were observed in spring 2015 (Yeon-dong) and spring 2013 (Gosan), whereas the lowest RFs (0.17 and 0.31 W/m2, respectively) in fall 2011 (Yeon-dong) and summer in 2012 (Gosan).