Dispersion-strengthened copper with was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly
Mn-Fe oxide and Mn-Fe oxide/(50wt%/50wt%) were prepared by ball milling method. XRD data of the prepared samples revealed that hematite and ferrite phase coexisted. Water splitting at 1273K, after thermal reduction at 1573K, was performed 4 times for the samples. Hydrogen production amount was analyzed by GC with TCD detector. Water splitting capacity of Mn-Fe oxide was improved by ball milling with .
The structural and magnetic properties of nanostructued alloy powders were investigated. Commercial alloy powders (Hoeganaes Co., USA) with purities were used to fabricate the nanostructure Fe-Si alloy powders through a high-energy ball milling process. The alloy powders were fabricated at 400 rpm for 50 h, resulting in an average grain size of 16 nm. The nanostructured powder was characterized by fcc and hcp phases and exhibited a minimum coercivity of approximately 50 Oe
The bi-materials composed of and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both powders mixture and mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.
Nanocrystalline powders of (x=0.45-0.6) have been synthesized by mechanochemical reaction at room temperature using high-energy ball milling from mixtures of Mn, Fe, P, and As Powders. It has been found that a mechanically induced self-propagating reaction (MSR) occurs within 2 hours of milling and it produces very fine polycrystalline powder having a hexagonal structure. Further milling up to 24 hours did not change the crystalline and average particle sizes or the phase composition of the milling product. When x is 0.65, no reaction among the reactants has been observed even after 24 hours of milling. As the P content decreases in , the incubation time for the MSR has increased and the lattice constants in both a and c axes have changed
The mechanochemical milling of Mg and alloys were carried out to examine the enhancement of hydrogen storage properties of Mg alloys. The hydroge characteristics of the ball-milled products were evaluated with a Sievert-type apparatus and electrochemical test. Various intermediate compounds were obtained by chemical reactions induced during the ball milling of Mg of alloys with C, Ni, and . The system of with 10 wt% C improved markedly the kinetics of hydrogen absorption, while the hydrogen capacities were practically unchanged. The hydrogen storage alloys such as Mg-Ca can be successfully.
Effect of ball filling ratio on the behavior of balls motion and their collision characteristic in a tumbler-ball milling of metal powder are investigated by a computer simulation. The discrete element method and the extended Kelvin model composed of nonlinear spring and nonlinear dashpot were employed in the simulation. It can be possible that analysis of the individual balls motion in a three-dimensional actual mill by the two-dimensional model simulation, since the simulated trajectories of ball paths are in relatively good agreement with the actual ones. It knows that the balls motion in the tumbler-ball mill is strongly influenced by the surface conditions of the balls and mill container wall. The energy consumption of the individual balls during impact and the impact frequency of the individual balls increased with an increase in the ball filling ratio and showed maximum values at about 50-60% ball filling ratio, and then decreased.