검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4,953

        65.
        2023.11 구독 인증기관·개인회원 무료
        Wolsong Unit 1, a domestic heavy water reactor nuclear power plant, was permanently shut down in December 2019. Accordingly, Wolsong Unit 1 plans to prepare a Final Decommissioning Plan (FDP), submit it to the government by 2024, receive approval for decommissioning, and begin full-scale decommissioning. One of the important tasks in the decommissioning of Wolsong Unit 1 is to determine the decommissioning strategy. It is necessary to decide on a decommissioning strategy considering various factors and variables, secure the technical background, and justify it. The selection of a decommissioning strategy is best achieved through the use of formal decisionmaking assistance techniques, such as considerations related to influencing factors. It is very important to understand the basic decommissioning strategy alternatives and whether sufficient consideration has been given to situations where only a single unit is permanently shut down in a multi-unit site like Wolsong Unit 1, while the remaining units are in normal operation. As a process for selecting a decommissioning strategy, first, all considerations that could potentially affect decommissioning presented in the KINS Decommissioning Safety Review Guidelines were synthesized, influencing factors to be used in the decision-making process were determined, and the concept was defined. In order to select the most appropriate decommissioning strategy by considering various evaluation attributes of possible decommissioning alternatives (immediate dismantling and delayed dismantling), the Wolsong Unit 1 decommissioning strategy was evaluated by reflecting the AHP decision-making technique.
        66.
        2023.11 구독 인증기관·개인회원 무료
        KEPCO KPS is the contractor for the full system decontamination (FSD) of Kori Unit 1 and under preparation such as modification, lay out for equipment installation, setting up tie-in/out point for chemical injection and way to pressurize the system, of its successful performance. In this research, KPS introduced how KPS has designed and prepared for the FSD project and how will the chemical decontamination process be implemented. As described in the previous research, chemical decontamination process is planned to be conducted for three cycles and each cycle is consisted of oxidation, reduction, decomposition, and purification. Oxidation and reduction process were conducted at 90°C. Chemical decomposition and purification process were conducted at 40°C due to the damage of IX by the heat. If the decontamination result does not meet the target DF and the dose rate, additional cycle can be conducted. Expected volume of process water for FSD is 200 m3. Three systems have been designated as decontamination targets: reactor coolant system (RCS), residual heat removal system (RHRS), chemical volume control system (CVCS). For the steady flow rate, existed plant equipment such as reactor coolant pump (RCP) will be operated and modifications on some components will be conducted. Due to the limited space for installation, decontamination equipment and other resources are distributed to three different places. KPS designed the layout of equipment installed inside the containment vessel. The layout contains the information of shielding for highly radiated equipment such as IX and filter skid.
        67.
        2023.11 구독 인증기관·개인회원 무료
        KHNP is conducting research to decommission Wolsong Unit 1 Calandria. Establishment of preparation and dismantlement processes, conceptual design of equipment and temporary radiation protection facilities, and waste management are being established. In particular, the ALARA plan is to be established by performing exposure dose evaluation for workers. This study aims to deal with the methodology of evaluating exposure dose based on the calandria dismantling process. The preparation process consists of bringing in and installing tooling and devices, and removing interference facilities to secure work space. The main source term for the preparation process is the calandria structure itself and crud of feeders. In the case of the dismantlement process, a structure with a shape that changes according to the process was modeled as a radiation source. It is intended to estimate the exposure dose by selecting the number of workers, time, and location required for each process in the radiation field evaluated according to the preparation and dismantlement process. In addition, it is also conducting an evaluation of the impact on dust generated by cutting operations and the human impact of C-14, H-3, which are specialized nuclides for heavy water reactors. KHNP is conducting an exposure dose evaluation based on a process based on the preparation and dismantlement process for decommissioning Calandria through computation code analysis. If additional worker protection measures are deemed necessary through dose evaluation according to this methodology, the process is improved to prepare for the dismantling of worker safety priorities.
        68.
        2023.11 구독 인증기관·개인회원 무료
        Derived Concentration Guideline Levels (DCGLs), which represent the residual radioactivity concentration limits, serve as the pivotal criteria for decontamination during decommissioning of nuclear power plants and are essential for license termination. The analysis of radionuclides in various media to check site-specific and radionuclide-specific DCGLs is a resource-intensive and time-consuming processes, and there are some radionuclides that are hard to analyze. In the decommissioning of the Rancho Seco nuclear power plant in the United States, a conservative approach was adopted. Potentially highly contaminated areas on the site were identified by collecting and analyzing soil samples, and radionuclides exceeding the Minimum Detectable Concentration (MDC) were selected as the potential Radionuclide of Concern (ROC), and surrogate DCGLs for hard-to-detect radionuclides were applied to soil samples. For soil samples in the Rancho Seco nuclear power plant, Cs-137 contributed more than 90% of the total radioactivity. DCGLs of the ROC were obtained using the scaling factors through analysis of Cs- 137 for a large amount of soil samples. In Korea, the scaling factor methodology has not been applied to the decommissioning of commercial nuclear power plants. An initial investigation was undertaken to assess the viability of implementing Surrogate Derived Concentration Guideline Levels (DCGLs) in the dismantling of Kori Unit 1, drawing insights from the U.S. nuclear power plant decommissioning experiences. To do this approach, the concentration ratio of radionuclides of interest to key radionuclide in contaminated soil should be known and consistent. But related information is not available at this time. So Surrogate DCGL for representative C-14, Fe-55, Ni-59, Ni-63, and Sr-90 was obtained using the scaling factors applied to radioactive waste data, specifically Decontaminated Aqueous Waste (DAW) and Spent Resin. In order to develop a reliable surrogate DCGLs the Kori Unit 1 site, it is important to analyze the radionuclides in the soil for the Kori Unit 1 decommissioning site to obtain consistent concentration ratio of the radionuclides of concern to the key radionuclides. When a the suitable DCGL is developed, it can be used for FSS planning and prior decision-making ensuring the safe and effective decommissioning of Kori Unit 1 and similar nuclear power plants.
        69.
        2023.11 구독 인증기관·개인회원 무료
        Kori Unit 1 nuclear power plant is a pressurized water reactor type with an output of 587 Mwe, which was permanently shut down on June 18, 2017. Currently, the final decommissioning plan (FDP) has been submitted and review is in progress. Once the FDP is approved, it is expected that dismantling will begin with the secondary system, and dismantling work on the primary system of Kori Unit 1 will begin after the spent nuclear fuel is taken out. It is expected that the space where the secondary system has been dismantled can be used as a temporary storage place, and the entire dismantling schedule is expected to proceed without delay. The main equipment of the secondary system is large and heavy. The rotating parts is connected to a single axis with a length of about 40 meters, and is complexly installed over three floors, making accessibility very difficult. A large pipe several kilometers long that supplies various fluids to the secondary system is installed hanging from the ceiling using a hanger between the main devices, and the outer diameter of the pipe is wrapped with insulation material to keep warm. In nuclear secondary system decommissioning, it is very important to check for radiation contamination, establish and implement countermeasures, and predict and manage safety and environmental risks that may occur when cutting and dismantling large heavy objects. So we plan to evaluate the radiation contamination characteristics of the secondary system using ISOCS (In- Situ Object Counting System) to check for possible radioactive contamination. According to the characteristics results, decommissioning plans and methods for safe dismantling by workers were studied. In addition, we conducted research on how to safely dismantle the secondary system in terms of industrial safety, such as asbestos, cutting and handling of heavy materials and so on. This study proposes a safe decommissioning method for various risks that may occur when dismantling the secondary system of Kori Unit 1 nuclear power plant.
        70.
        2023.11 구독 인증기관·개인회원 무료
        Kori Unit 1, pressurized water reactor, is the Korea’s first commercial nuclear power plant. It successfully generated electricity for a period of 30 years, commencing from April 19, 1978. Following its approval for continued operation in 2008, Kori Unit 1 continued to operate for an additional 9 years, resulting in a total operational period of 39 years. On June 18, 2017, Kori Unit 1 was permanently shut down. Since then, Korea is actively preparing for the decommissioning of nuclear power plant. During the decommissioning of a nuclear power plant, the heavy components such as reactor, steam generator, pressurizer, reactor coolant pump located in the containment building should be taken out of the containment building. To take out heavy components from the containment building, pipes connected to heavy component should be cut. There are numerous pipes connected to the heavy component, each with varying dimensions and material. Each pipe has a different level of contamination depending on its use. In this study, optimal cutting method of pipe connected to steam generator, one of the heavy components of nuclear power plant, is proposed during the decommissioning of Kori unit 1. In case of pipe connected to Kori unit 1 steam generator, material is stainless steel or carbon steel. These pipes have varying inner diameter, ranging from 0.6 cm to 74 cm, and thickness ranging from 0.15 cm to 7.1 cm. These pipes are classified as low and intermediate level waste (LILW) or very low level waste (VLLW). Because characteristics of pipes are different, each pipe optimal cutting methods are proposed differently considering material, dimension, contamination level, cutting cost, cutting time, and the management of secondary waste. As a result, the cutting method for pipe of reactor coolant system is selected to orbital cutting. The cutting method of main steam pipe and main feedwater pipe is selected to oxygen cutting. In case of other small pipes, cutting method is selected to circular saw.
        71.
        2023.11 구독 인증기관·개인회원 무료
        In the decommissioning site of Korean Research Reactor 1&2 (KRR-1&2), according to Low and Intermediate-level Radioactive Waste Disposal Acceptance Criteria of the Korea Radioactive Waste Agency (WAC-SIL-2022-1), characteristics of radioactive waste was conducted on approximately 550 drums of concrete and soil waste for a year starting from 2021. Among them, 50 drums of concrete waste transported and disposed to Gyeongju LILW disposal facility at the end of 2022. For the remaining approximately 500 drums of concrete and soil waste stored on-site, they were reclassified into two categories: permanent disposal grade and clearance grade. This classification was based on calculating the sum of fractions (SOF) per drum for each radionuclides. The plan is to dispose of around 200 drums in the permanent disposal grade and about 300 drums in the clearance grade by the end of 2023. Since concrete and soil decommissioning wastes are generated in large quantities over a short period with similar origins, they were grouped within five drums as suggested by the acceptance criteria. Mixed samples were collected from each group and used for radionuclide analysis. When utilizing mixed samples, three distinct samples are collected and analyzed for each group. The maximum value among these three radionuclide analysis results is then uniformly applied as the radionuclide concentration value for all drums within that group. Radioactive nuclides contained in similar types of radioactive waste with similar origins can be expected to have some statistical distribution. However, There has been no verification as to whether the maximum value among the three mixed samples exists within the statistical distribution or if it deviates from this distribution to represent a different value. In this study, we confirmed characteristics of radionuclide concentration distribution by examining and comparing radionuclide concentration distributions for radioactive wastes drum grouped for nuclear characteristic among 50 concrete wastes drum disposed in year 2022 and 500 concretes & soils drum scheduled for disposal (clearance or permanent disposal) in year 2023. In particular, when comparing tritium to other nuclides, it was observed that the standard deviation for the distribution of maximum values was approximately 318 times larger.
        72.
        2023.11 구독 인증기관·개인회원 무료
        The decommissioning of Korea Research Reactor Units 1 and 2 (KRR 1&2), the first research reactors in South Korea, began in 1997 and the decommissioning status is currently proceeding with phase 3. It is expected that more than 5,000 tons of dismantled wastes will be generated as the contaminated building is demolished. Since these dismantled wastes must be disposed of in an efficient method considering economic feasibility, it is desirable to clearance extremely low-level wastes whose contamination is so minimal that the radiological risk is negligible. In Korea, in order to approve the clearance of radioactive waste, it must be proven that the nuclide concentration standards are met or that the dose to individuals and collectives is below the allowable dose value. At the KRR 1&2 decommissioning site, dismantled wastes have been steadily being disposed of through clearance procedure since 2021. Clearance was approved by the Korean Institute of Nuclear Safety (KINS) for one case of concrete waste in 2021 and two cases of metal waste in 2022. In 2023, the clearance of metal waste and asbestos waste has been approved so far, and in particular, this is the first case in Korea for asbestos waste. In this study, we compared the dose assessment methods and results of clearance wastes at the KRR 1&2 decommissioning site from 2021 to present. Dose assessment was conducted by applying the landfill scenario for concrete and asbestos and the recycling scenario for metal waste. The calculation codes used were RESRAD-onsite 7.2 and RESRAD-recycle 3.10. The dose conversion factors (DCF) for each age group (infant, 1y, 5y, 10y, 15y, adult) of the target nuclide used the values presented in ICRP-72, and in particular, geo-hydrological data of the actual landfill site was used as an input factor when evaluating landfill scenarios. As a result of the dose assessment, when landfilling concrete wastes in 2020, the personal dose and collective dose were evaluated the most at 2.80E+00 μSv/y and 4.83E-02 man·Sv/y, respectively.
        73.
        2023.11 구독 인증기관·개인회원 무료
        In the 3rd revision of NUREG-0800, which was revised in 2007, the calculation method for decay heat in the design of the Ultimate Heat Sink (UHS) for a pressurized water reactor is recommended to be based on the ANSI/ANS-5.1 method. This method employs a more complex decay heat calculation formula compared to the one introduced in Branch Technical Position ASB 9-2, which was presented in the 2nd revision. While most of the variables for decay heat calculation in ANSI/ANS-5.1 can be inferred from the methods outlined in the appendices, determining the fractions of fission products is not straightforward despite their significant impact on the results. When reviewing documents that evaluate decay heat using the ANSI/ANS-5.1 method, it is observed that they often adopt a conservative approach by assuming that the fraction of the most influential fission product is 100%. In this study, the fractions of each fission product presented in LLNL’s 2016 report were used to calculate decay heat, and the results were compared with the ASB 9-2 method and ORIGEN code results. The comparison showed that ANS 5.1 tends to yield higher decay heat values than ANS 9-2, particularly at the reference time of 1M seconds, while ORIGEN-ARP generally produced lower values. Therefore, it is concluded that even when using the ANSI/ANS-5.1 method with the fractions of each fission product for decay heat calculations in spent nuclear fuel wet or dry storage facility assessments, it provides a sufficiently conservative thermal evaluation.
        74.
        2023.11 구독 인증기관 무료, 개인회원 유료
        4,000원
        76.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인삼부산물 및 인삼밭 토양에서 분리한 9균주 중 β-Glucosidase 생성 균주 GYP-1과 GYP-3-3 균주를 선발하였다. 선발된 β-Glucosidase 생성 균주에 대하여 16S rRNA 유전자 염기서열과 ITS 염기서열을 기반으로 계통 분석을 실시한 결과, GYP-1 균주는 Rhodotorula 속에 속하며, GYP-3-3 은 Brachybacterium 속에 속하는 것으로 확인되었다. 특히, Rhodotorula sp. GYP-1 균주는 호기성 효모 종으로 biomass 생산량이 높아 최종 우수 균주로 선발하였다. Rhodotorula sp. GYP-1가 생성하는 β -Glucosidase의 온도 및 pH에 따른 효소 활성 및 안정성을 검정한 결과, 30 ℃에서 6.7 unit/ml로 가장 높은 활성을 나타내었고, 20 ℃ ∼ 40 ℃에서 효소 활성의 약 70 % 이상을 유지하는 것으로 확인하였다. pH에 따른 효소의 활성 및 안정의 경우, pH 5에서 6.8 unit/ml으로 가장 높은 활성을 나타내었고 pH 5∼ pH 8까지 93.3 % 이상의 효소 활성을 유지하는 것으로 확인하였다. Rhodotorula sp. GYP-1가 생성하는 β-Glucosidase는 ginsenoside Rb1 minor 진세노사이드로 분해하는 것으로 확인되었다. 또한, 인삼 뿌리 병원균(Botrytis cinerea)에 대해 항진균능을 갖는 것으로 확인되었다.
        4,000원
        77.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Li1.5Al0.5Ti1.5(PO4)3 (LATP) is considered to be one of the promising solid-state electrolytes owing to its excellent chemical and thermal stability, wide potential range (~5.0 V), and high ionic conductivity (~10-4 S/cm). LATP powders are typically prepared via the sol-gel method by adding and mixing nitrate or alkoxide precursors with chelating agents. Here, the thermal properties, crystallinity, density, particle size, and distribution of LATP powders based on chelating agents (citric acid, acetylacetone, EDTA) are compared to find the optimal conditions for densely sintered LATP with high purity. In addition, the three types of LATP powders are utilized to prepare sintered solid electrolytes and observe the microstructure changes during the sintering process. The pyrolysis onset temperature and crystallization temperature of the powder samples are in the order AC-LATP > CA-LATP > ED-LATP, and the LATP powder utilizing citric acid exhibits the highest purity, as no secondary phase other than LiTi2PO4 phase is observed. LATP with citric acid and acetylacetone has a value close to the theoretical density (2.8 g/cm3) after sintering. In comparison, LATP with EDTA has a low sintered density (2.2 g/cm3) because of the generation of many pores after sintering.
        4,000원
        78.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Considering that the number of middle-aged single-person households is increasing, this study investigates dietary behaviors, nutrient intake, and mental health according to household type. Data were procured from the 2015-2019 Korea National Health and Nutrition Examination Survey (KNHANES). Totally, 5,466 participants aged 50-64 years were classified into 2 groups: a household with one member was defined as a single-person household, and households with two or more members were described as multi-person households. Single-person households comprised 10.63% of the total, with a higher average age, and lower income and economic levels than multi-person households. Compared to multiperson households, single-person households had a higher frequency of skipping breakfast, eating alone, and dining out, the moderately and severely food insecure group was more than 5 times, and nutrient intake and dietary quality were poorer. In the fully adjusted model, the odds ratios (ORs) of depressive symptoms were 2.35 times (95% CI: 1.39-3.96), and suicide ideation was 1.95 times (95% CI: 1.35-2.82) in single-person compared to multi-person households. Our results lead us to conclude that poor dietary intake in middle-aged single-person households affects the mental health, and the above factors should be considered when framing the dietary policy.
        4,000원
        79.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 중장년층 1인가구의 사회자본이 삶의 만족도에 어떠한 영 향을 미치는지 검증하는 것이다. 이를 위해 한국복지패널의 16차 자료 (2021년도)를 활용하여 40세이상 64세 이하 중장년층 344명을 최종 분 석대상으로 선정하였다. 분석방법은 SPSS 26.0을 활용하여 위계적 회 귀분석 등을 실시하였다. 주요 분석결과는 다음과 같다. 첫째, 중장년 층 1인가구의 삶의 만족도는 사회자본의 수준에 따라 다르게 나타나는 것으로 밝혀졌다. 둘째, 사회자본의 하위요인 중 네트워크만 중장년층 1인가구의 삶의 만족에 긍정적인 영향을 미치는 것으로 나타났다. 반 면, 신뢰와 호혜성은 삶의 만족에 영향을 미치지 않는 것으로 나타났 다. 이상의 연구결과를 바탕으로 중장년층 1인가구의 사회자본 축적과 삶의 만족도 증진을 위한 정책적, 실천적 방안을 제안하였다.
        6,400원
        80.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is in order to the effect of 1-methlycyclopropene (1-MCP) treatment and film package as modified atmosphere packaging (MAP) on the changes in fruit quality factors of 'Daehong' peaches during cold storage. The concentrations of 1-MCP were treated at 1μL·L-1 and 2μL·L-1, and peaches in film package were stored for 28 days in cold storage at 5±1°C and 85±5% RH. The fruits stored carton box were used as a control of MAP, and 1-MCP free fruits were used as the control of both packages. Rate of fresh weight loss during storage was not significantly different between groups with and without 1-MCP treatment, but was higher in the box package than in the MAP. The control group had a higher incidence of both gases with the 1-MCP treatment group showing statistically significantly low. Carbon dioxide in the package was lowered by about 12% compared to the non-treated group, and the ethylene concentration was maintained at 1μL·L-1, showing a significance low compared to other treated groups. As the storage period elapsed, the firmness of 1-MCP and MAP treated fruits remained significant at 5-9% compared to the control group. Regardless of the packaging method Hunter a* values of exocarp and mesocarp were significantly higher in fruit treated with 1-MCP 1μL·L-1 treatment than in the control group, and anthocyanin was significantly higher in the fruit during the storage period, especially high in MAP. In summary, fruits of MAP group with 1-MCP 1μL·L-1 had rate of lower respiration and ethylene production, and little changes in firmness, Hunter a* values of exo-carp and meso-carp, and anthocyanin, which is considered the most suitable method for preserving postharvest quality of the peach cultivar during the storage.
        4,200원
        1 2 3 4 5