검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,219

        85.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cereal grains are the dietary staple in many countries, including the Republic of Korea. These grains are usually consumed cooked. Korean grown raw and cooked brown non-glutinous rice (BNR), white non-glutinous rice (WNR), oats, and barley were analyzed to assess the effects of cooking on dietary fiber and free sugar content. The largest decrease in total dietary fiber (TDF) after cooking was observed in barley (11.62±1.26 to 2.96± 0.90 g/100 g), and the smallest decrease was observed in oats (8.1±0.34 to 8.1±0.32 g/100 g). Soluble dietary fiber decreased in oats (3.35±0.94 to 1.25±0.03 g/100 g) while insoluble dietary fiber increased (4.76±0.78 to 6.90±0.30 g/100 g) after cooking. TDF content was not changed. Of the six free sugars routinely assessed, only sucrose was detected in BNR and WNR. Sucrose decreased by about 0.6 g/100 g in BNR, and was not detected in WNR, after cooking. Fructose, sucrose, and raffinose were detected in oats (0.08, 0.83, and 0.19 g/100 g) and barley (0.09, 0.58, and 0.22 g/100 g) Maltose was also detected in barley (0.09 g/100 g). Total sugar content decreased in every cereal grain sample after cooking. This research reveals that dietary fiber and free sugar content can be reduced by cooking cereal grains.
        4,000원
        86.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers (CFs) are considered promising composite materials for various applications. However, the high cost of CFs (as much as $26 per kg) limits their practical use in the automobile and energy industries. In this study, we developed a continuous stabilization process for manufacturing low-cost CFs. We employed a textile-grade polyacrylonitrile (PAN) fiber as a low-cost precursor and UV irradiation technique to shorten the thermal stabilization time. We confirmed that UV irradiation on the textile-grade PAN fibers could lower the initial thermal stabilization temperature and also lead to a higher reaction. These resulted in a shorter overall stabilization time and enhancement of the tensile properties of textilegrade PAN-based CFs. Our study found that only 70 min of stabilization time with UV irradiation was required to prepare textile-grade PAN-based low-cost CFs with a tensile strength of 2.37 ± 0.22GPa and tensile modulus of 249 ± 5 GPa.
        4,000원
        87.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 다방향성 바잘트 섬유 시트로 보강한 철근콘크리트 보의 보강방법에 따른 전단거동을 실험을 통해 확인하 였다. 실험변수는 보강방법(무보강, 45도 90도 U형)과 보강겹수(0, 1 2겹)를 변수로 두었으며 전단강도실험결과 바잘트섬유시트 를 90도로 1겹 보강하였을 때 최대 11% 이상의 보강성능을 확인하였다. 또한, 유효변형률을 검토한 결과 섬유양이 증가함에 따 라 유효변형률이 감소함을 확인하였다.
        4,000원
        89.
        2022.10 구독 인증기관·개인회원 무료
        Glass fiber (GF) insulation is a non-combustible material, light, easy to transport/store, and has excellent thermal insulation performance, so it has been widely used in the piping of nuclear power plants. However, if the GF insulation is exposed to a high-temperature environment for a long period of time, there is a possibility that it may be crushed even with a small impact due to deterioration phenomenon and take the form of small particles. In fact, GF dust was generated in some of the insulation waste generated during the maintenance process. In the previous study, the disposal safety assessment of GF waste was performed under the abnormal condition of the disposal facility to calculate the radiation exposure dose of the public residing/ residents nearby facilities, and then the disposal safety of GF waste was verified by confirming that the exposure dose was less than the limit. However, the revised guidelines for safety assessment require the addition of exposure dose assessment of workers. Therefore, in this study, accident scenarios at disposal facilities were derived and the exposure dose to the workers during the accident was evaluated. The evaluation was carried out in the following order: (1) selection of accident scenario, (2) calculation of exposure dose, (3) comparison of evaluation results with dose limits, and confirmation of satisfaction. The representative accident scenarios with the highest risk among the facility accident were selected as; (a) the fire in the treatment facility, (b) the fire in the storage facility, and (c) fire after a collision of transport vehicles. The internal and external exposure doses of the worker by radioactive plume were calculated at 10m away from the accident point. In evaluation, the dose conversion factors ICRP-72 and FGR12 were used. As a result of the calculation, the exposure dose to workers was derived as about 0.08 mSv, 0.20 mSv, and 0.10 mSv, due to fire accidents (vehicle collision, storage facilities, treatment facilities). These were 0.2%, 0.4%, and 0.2% of the limit, and the radiation risk to workers was evaluated to be very low. The results of this study will be used as basic data to prove the safety of the disposal of GF waste. The sensitivity analysis will be performed by changing the radiation source and emission rate in the future.
        90.
        2022.10 구독 인증기관·개인회원 무료
        Currently, Hanul NPP packages glass fiber classified as particulate waste in plastic packaging bags and stores them in 200 L drums. KORAD’s Waste Acceptance Criteria (WAC) presents that very low-level soil can be immobilized by loading it in a soft bag and then packaging it in a 200 L or 320 L steel drum. As currently accepted method of packaging with soft bag applies to only very low-level soils among the wastes with a risk of dispersion, it is necessary to develop a non-dispersible treatment suitable for the characteristics of other particulate waste in the future. Therefore, in order for Hanul packaging pack to be approved as an alternative method for immobilization of dispersible substances, it is necessary to verify the suitability of the packaging bag. In this paper, whether the glass fiber packaging bag used in Hanul NPP satisfies the characteristic of the soft bag presented in the WAC and the possibility of being considered as a non-dispersible measure for particulate are examined. The soft bag must meet the following requirements: material and structure, shape, drop test, and immersion test. The results of the review are as follows. First, since the glass fiber is already packaged in the drum, only the role of the inner layer, made of polyethylene, having a watertight function may be required. Second, when packaging a drum, the packaging bag is compressed into a shaped frame having an inner size of a 200 L drum, so it is packaged with little empty space in the drum. Third, as a result of a drop test of a packaging pack containing 20 kg of contents from a height of 1.2 m, it was confirmed that there was no leakage of contents. Fourth, the packaging bag was immersed in a 1-m depth water tank for 30-minutes, and the performance corresponding to the IPX7 was satisfied. As a result of reviewing the soft bag characteristic of Hanul glass fiber packaging bag, it is considered that the bag can be used as one of the non-dispersible measures because it meets almost the characteristics required by the WAC. In addition, the acceptance criteria of overseas disposal sites present various secure packaging methods in place of immobilization as a non-dispersible measure for waste containing particulate matter. It is necessary to reflect these overseas cases in the establishment of non-dispersible measures for domestic waste acceptance in the future.
        93.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fibers are commonly used in many specialized, high-performance applications such as race cars and aircraft due to their lightweight and high durability. The most important stage in the production of carbon fibers is the carbonization process. During this process, carbon fibers are subjected to high temperatures in the absence of oxygen to prevent fibers from burning. Labyrinth seals are attached to a carbonization furnace to prevent airflow into the furnace and to assist in the elimination of off-gases. This study investigated flow characteristics inside a carbonization furnace and the effects of different geometric parameters of labyrinth seals such as labyrinth tooth shape, number of teeth, and tooth clearance. Varying carbonization furnace operating conditions were also studied in regard to flow behavior, including fiber movement and outlet vacuum pressure. A high working gas flow rate at the furnace inlet resulted in recirculation zones. Properly regulated gas flow from the main and labyrinth inlets enabled uniform flow around the fibers’ inlet and outlet which prevented air from being trapped in the reactor. Flow behavior was minimally effected by changes to labyrinth seal geometry such as tooth length, tooth clearance, and outlet pressure. However, the movement of fibers had a clear effect on flow characteristics in the furnace.
        4,000원
        94.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The utilization of carbonaceous reinforcement-based polymer matrix composites in structural applications has become a hot topic in composite research. Although conventional carbon fiber-reinforced polymer composites (CFRPs) have revolutionized the composite industry by offering unparalleled features, they are often plagued with a weak interface and lack of toughness. However, the promising aspects of carbon fiber-based fiber hybrid composites and hierarchical composites can compensate for these setbacks. This review provides a meticulous landscape and recent progress of polymer matrixbased different carbonaceous (carbon fiber, carbon nanotube, graphene, and nanodiamond) fillers reinforced composites’ mechanical properties. First, the mechanical performance of neat CFRP was exhaustively analyzed, attributing parameters were listed down, and CFRPs’ mechanical performance barriers were clearly outlined. Here, short carbon fiber-reinforced thermoplastic composite was distinguished as a prospective material. Second, the strategic advantages of fiber hybrid composites over conventional CFRP were elucidated. Third, the mechanical performance of hierarchical composites based on carbon nanotube (1D), graphene (2D) and nanodiamond (0D) was expounded and evaluated against neat CFRP. Fourth, the review comprehensively discussed different fabrication methods, categorized them according to performance and suggested potential future directions. From here, the review sorted out three-dimensional printing (3DP) as the most futuristic fabrication method and thoroughly delivered its pros and cons in the context of the aforementioned carbonaceous materials. To conclude, the structural applications, current challenges and future prospects pertinent to these carbonaceous fillers reinforced composite materials were elaborated.
        8,000원
        95.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the dietary fiber content of 33 kinds of agricultural products and seaweeds was compared with that of raw products after heat treatment. To verify the total dietary fiber analysis method, the recovery rate was reviewed by measuring the total dietary fiber content for 4 standard certified substances. As a result, the recovery rate of the analysis value for the true value was 98.8%~103.1%, which was judged to be reliable. The total dietary fiber of vegetables ranged between 0.61~5.36 g/100 g for raw vegetables and 0.55~4.84 g/100 g for heat-treated vegetables. Among the 24 kinds of vegetables used in the analanalysis, the total dietary fiber content of heat-treated Korean radish (3.13 g/100 g) was the highest compared to that of raw radish (0.61 g/100 g). The total dietary fiber of beans was between 13.86~29.69 g/100 g for raw beans and 6.72~18.40 g/100 g for heat-treated beans. In particular, the total dietary fiber content of sword beans was the highest in both raw (29.69 g/100 g) and boiled (18.40 g/100 g) beans. The total dietary fiber content of the three types of seaweed was 1.93~4.85 g/100 g in raw seaweed and 0.99~5.72 g/100 g in heat-treated seaweed.
        4,000원
        96.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Acrylonitrile–butadiene–styrene (ABS) terpolymer was compounded with short carbon fiber (CF) and carbon nanotube (CNT) using a micro-extruder followed by the injection molding process. Composite samples were fabricated with loading ratios of 20 wt.% CF and 0.1, 0.5 and 1.0 wt.% of CNT. Mechanical, electrical, thermo-mechanical, thermal, melt-flow, and structural investigations of ABS-based composites were conducted by performing tensile, impact, hardness, and wear tests, conductive atomic force microscopy (AFM), dynamic mechanical analysis (DMA), thermal gravimetric analysis (TGA), melt flow rate test (MFR), scanning electron microscopy (SEM) characterization techniques, respectively. According to mechanical test data of resultant composites including tensile and impact test findings, CNT additions led to the remarkable increase in tensile strength and impact resistance for CF reinforced ABS composites. The formation of synergy between CNT nanoparticles and CF was confirmed by electrical conduction results. The conductive path in ABS/CF composite system was achieved by the incorporation of CNT with different loading levels. SEM micrographs of composites proved that CNT nanoparticles exhibited homogeneous dispersion into ABS matrix for lower loadings.
        4,300원
        97.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the International Maritime Organization (IMO) are getting stricter, and the demand for replacing the fuel of ships with eco-friendly fuels instead of heavy oil in the shipbuilding and marine industries is increasing. Among eco-friendly fuels, LNG (liquefied natural gas) is currently the most popular fuel. This is because it is an alternative that can avoid the IMO's environmental regulations by replacing fuel. In PART 1, as a basic study of laser welding of high manganese steel materials, a fiber laser bead-on-plate experiment was conducted using nitrogen protective gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation. In PART II, argon and helium shielding gases, not the nitrogen shielding gas used in PART I, were tested under the same experimental conditions and the effect of the shielding gas on penetration during laser welding was conducted.
        4,000원
        98.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the IMO (International Maritime Organization) are becoming more and more conservative. In order to respond to IMO, the demand for replacing the fuel of ships with eco-friendly fuels instead of conventional heavy oil is increasing in the shipbuilding and offshore industries. Among eco-friendly fuels, LNG (Liquefied Natural Gas) is currently the most popular fuel. LNG is characteristically liquefied at -163 degrees, and at this time, its volume is reduced to 1/600, so it is transported in a cryogenic liquefied state for transport efficiency. A tank for storing this should have sufficient mechanical/thermal performance at cryogenic temperatures, and among them, high manganese steel is known as a material with high price competitiveness and satisfying these performance. However, high manganese steel has a limitation in that the mechanical performance of the filler metal is lower than that of the base metal called ‘under matching’. In this study, to overcome this limitation, a basic study was conducted to apply the fiber laser welding method without filler metal to high manganese steel. To obtain efficient welding conditions, in this study, bead-on-plate welding was performed by changing the fiber laser welding speed and output using helium shielding gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation.
        4,000원
        99.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 경주, 포항에 연이은 지진 발생으로 인하여 내진설계에 관심이 높아지고 있다. 다가구주택 필로티기둥은 수직 비정형 시스템으로 상,하부층의 강성 차이로 인하여 지진 발생 시 막대한 피해가 예상되기 때문에 다가구주택 필로티기둥의 내 진보강이 필요하다. 그러나 민간 소유인 다가구주택의 경우 막대한 비용과 시간으로 인하여 보강이 어려운 실정이다. 이에 따 라, 복합섬유패널로 에폭시 접착제 미사용으로 건식시공이 가능한 전단보강공법을 제안하고자 한다. 본 연구에서는 복합섬유패 널 보강 유무에 따른 내진보강공법의 전단내력을 실험을 통하여 검증하였고, 에폭시를 사용하지 않아 일체화 거동을 하지는 않 지만 복합섬유패널의 영향으로 전단내력은 1.46∼1.49배 증가하는 것으로 평가되었다. 따라서 다가구주택 필로티기둥의 내진보 강효과가 있을 것으로 판단된다.
        4,000원
        100.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국내 주요 사회기반시설의 70% 이상이 철근콘크리트 구조물로 구성되어 있다. 최근 다양한 사회적ㆍ환경적 변화로 인한 내하력 저하 및 노후화 진행이 발생됨에 따라 섬유강화 복합소재(FRP)를 활용한 유지보수 수요 및 비용이 급격히 증가되 고 있다. 이에 따라 보다 경제적이고 효율적으로 FRP 보강재를 활용함에 있어서 성능을 예측할 수 있는 방법이 요구된다. 본 연구에서는 CFRPㆍBFRP 복합재료를 실험 대상으로 선정하고 성능을 결정하는 주요 인자인 섬유/수지 함침률을 54.3%, 43.9%, 39% 3가지로 분류하여 성능을 평가하고 이를 활용하여 FRP의 성능을 예측할 수 있는 모델식을 개발하고자 하였다. 매개변수에 따른 성능평가 결과, 두 섬유 모두 함침률이 낮아질수록 재료성능 또한 감소되는 것이 확인되었으며, 특히 BFRP의 경우 39%의 함침률에서 감소폭이 CFRP 대비 더 큰 것으로 나타났다. 실험 결과와 기존의 예측 모델식과의 성능 비교를 통해 약 15%의 오 차가 나타나는 것을 확인하였으며, 이에 따른 보정계수를 산정하여 예측 모델식을 재정립하였다.
        4,200원
        1 2 3 4 5