In the present study, a calorimeter was used to experimentally investigate the heating capacity and COP changes according to the pipe length of a variable capacity A/C system with long pipes. Cooling capacity, COP, and compressor discharge temperature were obtained by changing pipe lengths and loading duties at fixed indoor and outdoor temperatures. And the operation status and cycle change process of the A/C system were investigated using some experimental data and P-h diagrams. As the pipe length changes, the heat transfer within the cycle and the operating load of the compressor change, so the heating capacity and COP of the system change. At the same loading duty, as the pipe length increases, the heating capacity and COP decrease. As the loading duty increased, the heating capacity increased almost linearly, but the COP decreased. Since the long pipe experimental value for the compressor discharge temperature has a temperature deviation of up to 1 7℃(50m, L/D : 10/10) from the correlation equation, the optimal correlation equation must be derived through additional research.
In the present study, a calorimeter was used to experimentally investigate the cooling capacity and COP changes according to the pipe length of a variable capacity A/C system with long pipes. Cooling capacity, COP, and compressor discharge temperature were obtained by changing pipe length and loading duty. And the operation status and cycle change process of the A/C system were investigated using some experimental data and P-h diagrams. In long pipes, the pressure drop increases and the operating load on the compressor increases. Additionally, at the same loading duty, cooling capacity and COP decrease and the compressor discharge temperature increases. As loading duty increases, cooling capacity and compressor power consumption increase. Since the temperature deviation between the experimental value and the correlation equation for the discharge temperature of the long-pipe compressor shows a maximum of 10.5℃(50m, L/D : 20/0), the existing correlation equation needs to be modified.
In this study, the heating performance of a variable capacity A/C system was experimentally studied. A psychrometric calorimeter was used to obtain performance data of the A/C system using PWM(pluse width modulation) method and compare it with the compressor discharge temperature correlation equation. Heating capacity, COP, and compressor discharge temperature were obtained by changing indoor and outdoor temperatures, refrigerant amount, and loading duty. The following results were obtained by selecting 5 types of refrigerant amount, 3 types of outdoor temperature (fixed indoor temperature), and 2 types of loading duty. As the outdoor temperature increases, heating capacity and COP increase. Heating capacity was affected by both outdoor temperature and loading duty. However, COP was more influenced by outdoor temperature. The effect of increasing the amount of refrigerant on the performance of the A/C system was not significant. Additionally, the temperature deviation between the existing compressor discharge temperature correlation equation and the heating experiment data was about 5.1℃ at the maximum loading duty.
In this study, the cooling performance of a variable capacity A/C system was experimentally studied. A psychrometric calorimeter was used to obtain performance data of the A/C system using the pulse width modulation method and compare it with the compressor discharge temperature correlation equation. Cooling capacity, COP, and compressor discharge temperature were obtained by changing indoor and outdoor temperatures, refrigerant amount, and loading duty. The following results were obtained by selecting 5 types of refrigerant amount, 3 types of outdoor temperature (fixed indoor temperature), and 2 types of loading duty. As the outdoor temperature increased, cooling capacity and COP according to outdoor conditions decreased. And the higher the loading duty, the greater the cooling capacity, but the COP was minimal. The change in cooling capacity and COP due to the increase in refrigerant amount was not significant. Additionally, the change in compressor discharge temperature is more influenced by the outside temperature than by the loading duty.
This study improved the work efficiency by supplementing the shortcomings of the manual process by developing a double tube feeding device, and the following results were obtained by conducting the production capacity, production length, and defect rate tests. Developed a double tube production system to enable the simultaneous production of two tubes, increasing the production volume by about 1.5 times. The product length has been improved from semi-automatic to automated, and the production capacity has been improved from 16 to 25 pieces per hour (based on 15m). Developed a double-tube input straight line automatic adjustment feeder, which resulted in reducing the defect rate to less than 1%.
Vortex tube is a simple structure and environmentally friendly method of temperature separation. In this paper, the applicability of the vehicle air conditioning system using the Vortex tube was reviewed. Experimental conditions, the pressure was set at 0.5~5.0kgf/cm2, and the cold air flow ratio (yc) was set at 0.1~0.9. Experiment result, the high temperature section represents the highest temperature value at yc=0.8. The cold zone represents the lowest temperature value at yc=0.5. In case of indirect heat exchanger experiment result, the maximum temperature difference was 11°C in the cold zone and 15°C in the hot zone. In case of direct heat exchange, the low temperature area was 11°C and the high temperature area was 11°C. According to the experiment result, although indirect heat exchange method performs better than direct heat exchange method, the time to reach normal temperature is four times slower than direct heat exchange method. Therefore, in order to apply to a vehicle air conditioning system, it is judged that it is effective to use a direct heat exchange method having a fast reaction speed and a low flow rate resistance.
In this study, the condition of the hazardous materials in the bus was monitored according to the ventilation mode of the air conditioning system during bus service. The bus was surveyed using the indoor air quality measurement method of public transportation vehicles within one year of delivery. We evaluate the CO2 and PM10, which are the controlled parameters in buses by the Ministry of Environment, and VOCs and HCHO, the non-controlled parameters. The PM10 concentration increased due to outdoor air intake; however the CO2 concentration was found to decrease. In addition, the concentration of VOCs and HCHO was found to decrease due to the forced ventilation system and the outdoor air intake. These results show that the concentration of the other materials except PM10 can be changed due to the outside air concentration and forced ventilation system. Therefore, through indoor air quality characteristics of the bus according to air condition system are intended to be used as the basis of an operation manual.
The Automobile HVAC system is a habitat for odor-associated fungal communities. We investigated the odorassociated fungal community in an automobile HVAC system using a high-throughput DNA sequencing method. The fungal community structure was evaluated via metagenome analysis. At the phylum level, Ascomycota and Basidiomycota were detected, accounting for 43.41% and 56.49% of the fungal community in the HVAC system, respectively. Columnosphaeria (8.31%), Didymella (5.60%), Davidiella (5.50%), Microxyphium (4.24%), unclassified Pleosporales (2.90%), and Cladosporium (2.79%) were abundant at phylum of Ascomycota and Christiansenia (36.72%), Rhodotorula (10.48%), and Sporidiobolus (2.34%) were abundant at phylum of Basidiomycota. A total of 22 genera of fungi were isolated and identified from the evaporators of the HVAC systems which support fungal growth and biofilm formation. Among them, Cladosporium, Penicillium, Aspergillus and Alternaria are the most representative odor-associated fungi in HVAC systems. They were reported to form biofilm on the surface of HVAC systems with other bacteria by hypha. In addition, they produce various mVOCs such as 3-methyl-1-butanol, acetic acid, butanoic acid, and methyl isobutyl ketone. Our findings may be useful for extending the understanding of odor-associated fungal communities in automobile HVAC systems.
In this paper, we utilize a Gaussian process to predict the power consumption in the air-conditioning system. As the power consumption in the air-conditioning system takes a form of a time-series and the prediction of the power consumption becomes very important from the perspective of the efficient energy management, it is worth to investigate the time-series model for the prediction of the power consumption. To this end, we apply the Gaussian process to predict the power consumption, in which the Gaussian process provides a prior probability to every possible function and higher probabilities are given to functions that are more likely consistent with the empirical data. We also discuss how to estimate the hyper-parameters, which are parameters in the covariance function of the Gaussian process model. We estimated the hyper-parameters with two different methods (marginal likelihood and leave-one-out cross validation) and obtained a model that pertinently describes the data and the results are more or less independent of the estimation method of hyper-parameters. We validated the prediction results by the error analysis of the mean relative error and the mean absolute error. The mean relative error analysis showed that about 3.4% of the predicted value came from the error, and the mean absolute error analysis confirmed that the error in within the standard deviation of the predicted value. We also adopt the non-parametric Wilcoxon’s sign-rank test to assess the fitness of the proposed model and found that the null hypothesis of uniformity was accepted under the significance level of 5%. These results can be applied to a more elaborate control of the power consumption in the air-conditioning system.
The aim of these studies are to provide a basic data for the development of high-efficiency environmental improvement system that can parallel the cage(henhouse) and hot and cold potable water supply for increased summer heat stress relief and winter feed efficiency by optimal design. The cage area is 273m2. The air-to-water heat pump with 20RT capacity was used for heating and cooling. The control was used as an electric hot water boiler. For calculating heating load determined the cage size, materials, heat pump capacity, heating capacity, heat storage tank, and drinking water tank capacity etc. Therefore the capacity of heat pump was set-up using 20RT. The cage was built as a prefabricated panels henhouse of 13×21×4.5 m (width×depth×height). The heat storage tank and was drinking water tank capacity was constructed 3tons and 10 tons, respectively. In future, it is thought that optimal design considering the cage size and hen breeding scale is required.
In this study, by comparing the heating performance when operating the air conditioning system that is installed directly air-cooled(heater) air conditioning central air conditioning system of the ship, with improved performance, through the actual measurement study of thermal environment of the cabin, Ship's air conditioning in the future it is intended to be used as a basic data experience of design and planning.
In this study, to develop high-efficiency environmental improvement system that can be combined with hot and cold potable water supply to poultry air conditioning for the summer increase heat stress relief and winter feed efficiency through optimal design hwihan The aim of this study was to provide basic data. As a cage the size of the system installed is 100m2 test capacity 20RT district heating and cooling of air-to-water heat pump and the control was composed of electric hot water boilers. First of cage sizes for heating load design, materials, heat pump capacity, air capacity, storage tank, drinking water tank capacity, etc. were determined. The capacity of the heat pump was set to 20RT cage captive birds are erected as vertically and horizontally × height × (13 × 21 × 4.5m). Storage tank 3 tons and capacity of 10 tons potable water tank was designed. In the future, the size of the cage, designed according to the best breeding two numbers are needed.
본 연구에서는 목포해양대학교의 실습선 새누리호를 대상으로 선박의 중앙집중 공조시스템에 공랭식 에어컨을 직접 설치하여 성능을 개선시킨 공기조화시스템으로 운전하였을 경우의 냉방 성능을 비교하고, 선실의 온열환경에 대한 실측조사를 통해서 향후 선박용 공기조화 설계 및 계획에 경험적 기초참고자료로 활용하고자 하는 것이다. 연구결과 동일한 외기조건에서 기존의 중앙집중방식 공조시스템과 개선된 공조시스템으로 운전하였을 경우, 모든 선실의 온도는 24~28 ℃, 습도는 55~75 %로 쾌적한 조건임을 알 수 있었고, 발전기 부하를 측정결과 공기조화시스템의 성능개선에 따라 평균 부하 48 KW, 전부하시 부하율 약 8 %정도 감소하여 1일 연료소모량 FOC는 하루 평균 222[L/day]의 기름이 절약됨을 알 수 있었다. 또한 학생 선실(Cadet No. 21)은 기관실의 전열로 인해서 온도가 높게 나타났는데, 이것은 공기조화 설계 시 취출구 개수 및 전열부하를 고려하지 못한 결과로 판단된다.
본 연구에서는 선박의 중앙집중 공조시스템에 공랭식 에어컨(전기히터 내장형)을 직접 설치하여 성능을 개선시킨 공기조화시스템으로 운전하였을 경우의 난방 성능을 비교하고, 선실의 온열환경에 대한 실측조사를 통해서 향후 선박용 공기조화 설계 및 계획에 경험적 기초참고자료로 활용하고자 하는 것이다. 연구결과 동일한 외기조건에서 기존의 중앙집중 방식 공조시스템과 개선된 공조시스템으로 운전하였을 경우..
본 연구에서는 선박의 중앙집중 공조시스템에 공랭식 에어컨을 직접 설치하여 열원의 성능개선과 거주 구역별 독립 냉 난방이 가능한 개별분산 공조시스템을 하고자 하는 것이다. 연구 결과 기존의 중앙집중방식 공조시스템에 비해 열원 제어와 열효율상의 문제점을 보완함과 동시에 장치의 효율을 향상시킴을 확인하였다. 또한 동일한 조건에서 장치의 냉동능력과 성능계수는 평균 약 3 %, 23~26 % 정도 높게 나타났으며, Chilled Water Plants의 압축기 소비동력은 약 12 % 정도 낮게 나타났고, 동일한 조건에서 난방 시 소비동력은 약 33.5 % 낮게 나타났다. 따라서 공랭식 에어컨을 이용한 개별분산 공조시스템이 열원 제어뿐만 아니라 장치의 성능향상과 거주구역별 쾌적한 온 습도 환경 조성에 크게 기여하는 결과를 얻을 수 있었다.