이소시아네이트와 아민의 빠른 반응성으로 인해 고가의 전용 도포 설비가 있어야만 시공이 가능하였던 우레아 수지를, 일반적인 도포 설비로도 시공이 가능하도록 수분산 상태의 우레아 수지를 합성하기 위한 조건을 설정하기 위하여, 1차적으로 분자량과 관능기의 수가 다른 폴리이서 아민과 다이이 소시아네이트를 사용하여 기계적 물성이 우수한 수분산 우레아 수지 합성 조건을 찾고, 2차적으로 DMPA [2,2-Bis(hydroxymethyl)propanoic acid]의 함량이 수분산 우레아 수지의 수분산 안정성에 미치는 영향을 연구하였다. 우레아기의 형성은 FT-IR ATR 분광법으로 확인하였다. 그 결과 수분산 우레아 수지의 기계적 물성은 분자량과 관능기수가 다른 폴리이서 디아민과 폴리이서 트리아민을 함께 투입한 PU-4와 PU-6 배합의 경우, 각각 인장강도가 10.5 N/㎟, 12.7 N/㎟ 및 신장률이 1165 %, 969 %로 우수하였다. 또한, 인장강도가 가장 높은 PU-6 배합에 DMPA을 0.5 몰 첨가하여 합성한 후 트리에틸 아민으로 중화시킨 수분산 우레아 수지가 14.2 N/㎟의 인장강도와 993 %의 신율로 가장 우수하였으며, 8 주 동안의 저장안전성 평가에서도 수분산 상태가 가장 안정하게 유지되었다.
This study examines the role of the nano- and micro-particle ratio in dispersion stability and mechanical properties of composite resins for SLA(stereolithography) 3D printing technology. VTES(vinyltriethoxysilane)-coated ZrO2 ceramic particles with different nano- and micro-particle ratios are prepared by a hydrolysis and condensation reaction and then dispersed in commercial photopolymer (High-temp) based on interpenetrating networks(IPNs). The coating characteristics of VTES-coated ZrO2 particles are observed by FE-TEM and FT-IR. The rheological properties of VTEScoated ZrO2/High-temp composite solution with different particle ratios are investigated by rheometer, and the dispersion properties of the composite solution are confirmed by relaxation NMR and Turbiscan. The mechanical properties of 3Dprinted objects are measured by a tensile test and nanoindenter. To investigate the aggregation and dispersion properties of VTES-coated ZrO2 ceramic particles with different particle ratios, we observe the cross-sectional images of 3D printed objects using FE-SEM. The 3D printed objects of the composite solution with nano-particles of 80 % demonstrate improved mechanical characteristics.
The improvement of dispersion stability for the primary polishing slurry in a CMP process is achieved to prevent defects produced by agglomeration of the slurry. The dispersion properties are analyzed according to the physical characteristics of each silica sol sample. Further, the difference in the dispersion stability is confirmed as the surfactant content. The dispersibility results measured by Zeta potential suggest that the dispersion properties depend on the content and size of the abrasive in the primary polishing slurry. Moreover, the optimum ratio for high dispersion stability is confirmed as the addition content of the surfactant. Based on the aforementioned results, the long-term stability of each slurry is analyzed. Turbiscan analysis demonstrates that the agglomeration occurs depending on the increasing amount of surfactant. As a result, we demonstrate that the increased particle size and the decreased content of silica improve the dispersion stability and long-term stability.
NiO catalysts/Al2O3/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD)and subsequent dip-coating methods. FeCrAl alloy foam and Al2O3 inter-layer were used as catalyst supports. To improve thedispersion and stability of NiO catalysts, an Al2O3 inter-layer was introduced and their thickness was systematically controlledto 0, 20, 50 and 80nm using an ALD technique. The structural, chemical bonding and morphological properties (includingdispersion) of the NiO catalysts/Al2O3/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectronspectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. Inparticular, to evaluate the stability of the NiO catalysts grown on Al2O3/FeCrAl alloy foam, chronoamperometry tests wereperformed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We foundthat the introduction of Al2O3 inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, whenan Al2O3 inter-layer with a 80nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicatedimproved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can beexplained by optimum thickness of Al2O3 inter-layer resulting from the role of a passivation layer.
The blending schemes of Saengshik powder with water were established to retain the dispersion stability of the Saengshik beverage in order to develop a ready-to-drink type product. The effect of the blending on the rheological properties and the dispersion stability of Saengshik beverage were determined. The Saengshik beverages, blended with low shear force for a short time, showed dilatant fluid characteristics, while those with high shear force for a long time had pseudoplastic fluid ones. The consistency of Saengshik beverage increased with the blending speed and time. Saengshik beverage blended at low shear showed rheopexy while becoming time independent by a highshear blending action. A logarithmic model fitted well to the changes in backscattering light flux with the rest time of Saengshik beverage. Based on sedimentation kinetics, the migration speed of clear front, and the thickness of sedimented layer, Saengshik beverage with maximum dispersion stability was obtained by a high shear blending at 15,120 rpm for 25 s.
생식 첨가량을 3.7-11.7%로 조절한 생식음료의 분산안정성을 터비스캔을 사용하여 광학적 방법으로 측정하였다. 생식음료는 제조 후 시간이 경과함에 따라 음료 하부에서는 침전이 생성되어 후방산란광플럭스(이후 후광플럭스로 약칭)가 강해진 반면, 중간부에서는 청징현상에 의해 약해졌으며, 최상층부에서는 거품이 생성되어 다시 강해졌다. 생식 첨가량이 증가할수록 침전이 서서히 진행되었으며 전체 침전층은 두텁게 형성되었다. 침전에 의한 후광플럭스의 퍼센트변화율의 시간에 따른 변화는 로그 모델이 적용되었으며 결정계수는 0.979-0.988로 높은 값을 보였다. 생식 첨가량은 생식음료의 상층부에 형성되는 청징층과 하층부의 침전층의 경계면, 즉 청징층 선단의 이동속도 뿐 만 아니라 분리된 층의 수에도 영향을 미쳤다. 생식 첨가량 3.7%의 경우는 2층으로, 5.7-9.7%의 경우는 3개 층으로, 11.7%는 4개 층으로 분리되었다. 생식음료 제조 후 17-29분 사이에 1차 청징층 발생이 시작되었고 22-53분간 지속되었으며, 생식첨가량이 낮을수록 청징층 두께는 증가하였다. 청징층 발생은 생식 첨가량 7.7%인 음료에서 가장 늦게 나타나 최대 분산안정성을 보였다.
The surface of magnetite () nanoparticles prepared by coprecipitation method was modified by carboxylic acid group of poly(3-thiophenacetic acid (3TA)) and meso-2,3-dimercaptosuccinic acid (DMSA). Then the lysozyme protein was immobilized on the carboxylic acid group of the modification of the magnetite nanoparticles. The magnetite nanoparticles are spherical and the particle size is approximately 10 nm. We measured quantitative dispersion state by dispersion stability analyzer for each nanoparticles with and without surface modification. The concentration of lysozyme on the modified magnetite nanoparticles was also investigated by a UV-Vis spectrometer and compared to that of magnetite nanoparticles without surface modification. The functionalized magnetite particles had higher enzymatic capacity and dispersion stability than non-functionalized magnetite nanoparticles
In this study, the colloidal stability and sedimentation behavior of crystalline particles (300nm) in various organic solvents have been investigated by means of a backscattered light flux profile (Turbiscan). The backscattered light flux profiles revealed that the nanoparticles were readily sedimented in water, methyl alcohol, and ethyl alcohol due to a flocculation-induced particle growth, while a particle coalescence and a sedimentation of the nanoparticles were hardly observed in isopropyl alcohol. The migration velocities of the particle were measured as around 6.15/min, 12.53 m/min, 6.51m/min, and 0.18m/min for water, methyl alcohol, ethyl alcohol, and isopropyl alcohol, respectively, showing a remarkably slow migration of the particles in isopropyl alcohol
The sodium α-sulfo fatty acid vinyl ester oligomers, which are oligomer type surfactants were prepared by polymerization with fatty acid vinyl acetate. The α-sulfonation of fatty acid vinyl ester oligomers were carried by direct addition of sulfur trioxide. The dispersing performance of oligomer type anionic surfactants and sodium dodecyl sulfate(SDS) in the aqueous suspension of iron oxide and titanium dioxide particles was evaluated by particle size distribution and zeta-potential measurement. As results, the particles of iron oxide and titanium dioxide were flocculated by addition of small amount of oligomer type anionic surfactants and sodium dodecyl sulfate(SDS), then the flocks redispersed by more addition of oligomer type anionic surfactants and SDS. The flocculation, redispersion process was observed in lower concentration range of oligomer type anionic surfactants than SDS. Especially, the dispersing action of sodium α-sulfo palmitic acid vinyl ester oligomer was better than sodium α-sulfo lauric acid vinyl ester oligomer.
Fluorescent anionic oligo surfactants were synthesized by the condensing products of long chain alkylvinylether-maleic anhydride cooligomers and resorcinol including dye structures. Their various surface activities and dispersing action were studied on the aqueous solution. These oligo surfactants exhibited a remarkable surface tension lowering property, lower foaming and a large dispersing action for the particles of α-copper phthalocyanine blue. Further it was ascertained that the binding of oligo surfactant onto the pigment surface caused the deviation towards lower wavelengths at the maximum fluorescent intensity as compared with aqueous oligo surfactant solutions, These surface active properties of the oligo surfactants may be attributed to rigid and hydrophobic structure of dye groups, besides surface-active groups of alkylether groups and carboxylic group of the anionic oligo surfactants.
Hexyltriphenylphosphonium-TCNQ(HTPP-TCNQ) complex for preparing organic thin film by Langmuir-Blodgett technique was synthesized from LiTCNQ and Hexyltriphenylphosphonium bromide. The structure of the new complex was confirmed by 1H NMR, 31P NMR, IR, UV spectroscopies, TGA and elemental analysis. A stability to spreading solvent, which is acetonitrile, ethylacetate, ethanol and acetonitrile-ethylacetate(1:1 v/v), of HTPP-TCNQ complex was investigated by UV-visible spectrophotometer. The complex was stabilized in acetonitrile, ethylacetate, aceton, acetonitrile-ethylacetate (1:1 v/v) for 6 h.
In this outline, the stability of solid/liquid dispersion was theoretically investigated the matter from all angles by using the modified DLVO theory. The stability was handled various considerations such as a production and characteristics of electrical double layer, total interaction(VT) that consisting of attractive force(VA) and repulsion(VR). coagulation, the stability ratio(W), critical flocculation concentration (cfc) and zeta potential(ξ) etc. It was possible for us to examine with the stability ratio(W), critical flocculation concentration (cfc) and zeta potential(ξ) that may estimation of stability of solid/liquid dispersion experimentally.
A stability to the spreading solvent, which is acetonitrile, benzene, chloroform and acetonitrile-benzene(1:1, v/v) of (3-Alkyl benzimidazdium)-TCNQ(1:2) complex was investigated by UV-visible spectrometer and was confirmed stabilized on acetonitrile, acetonitrile-benzene (1:1, v/v) for five hours. Using Ultra pure water as subphase for Langmuir-Blodgett(LB) films, it was achived successively to fabricate the Y-type LB films of (3-Alkyl benzimidazolium)-TCNQ(1:2) complex. For the identification of (3-Alkyl benzimidazolium)-TCNQ(1:2) complex, UV-visible spectra was recorded on HP 8452A spectrometer.
A Stability to the Spreading solvents, Which is acetonitrile, dichloromethane, benzene, chloroform and acetonitrile-benzene(1:1, v/v) of (3-Alkyl benzimidazolium)-TCNQ(1:1) Complex was investigated by UV-visible Spectrometer and was confirmed stabilized on acetonitrile, acetonitrilbenzene(1:1, v/v) for five hours. Using Ultra pure water as subphase for Langmuir-Blodgett (LB) Films, it was achived successively to fabricate the Y-type LB films of (3-Alkyl benzimidazolium)-TCNQ(1:1) Complex. For the identification of deposition of (3-Alkyl benzimidazolium)-TCNQ(1:1) Complex, UV-visible spectra was recorded on HP 8452A spectrometer.
A Stability to the dispersion solvent, which is acetonitrile, dichloromethane, benzene, chloroform and acetonitrile-benzene(1:1,v/v) of N-docosyl pyridinium)-TCNQ(1:2)complex was investigated by U.V Spectrophotometer and was confirmed stabilized on acetonitrile, the dichloromethane and acetonitrile-benzene (1:1,v/v) for seven hours. Using CdCl2buffer solution as subphase for LB films deposition, it was achived successively to fabricate the Y-type LB films of (N-docosyl pyridinium)-TCNQ(1:2)complex. For the sake of verifying the deposition of LB films, U.V is measured by variation of nominal layer number.