본 연구는 국내의 고온다습한 하절기에 산란계에 음용수 온도가 생산성, 호르몬 농도 및 혈액성상에 미치는 영향을 구명하고자 실행하였다. 52주령 하이라인 갈색종 산란계 432수를 3개 처리구와 8반복으로 반복당 18수씩 케이지 사육장(550 cm2/수)에 배치하였고, 처리구별로 14.5, 24.0 및 32.5℃의 음용 수를 4주간 급수하였다. 산란계의 생산성은 산란율과 난중을 매일 조사하여 계산하였고, 호르몬, 혈액 성상 및 계란품질은 사양실험 종료 후 채집하여 분석하였다. 본 연구결과 산란율과 1일 산란양은 14.5℃ 의 급수구에서 유의적으로 개선되었고(p<0.05), 사료섭취량과 난중은 14.5와 24.0℃ 급수구에서 32.5℃ 에 비하여 현저히 증가하였다(p<0.05). 계란의 난백높이와 호우유닛은 음용수 온도에 따른 처리구간 통계적 차이가 없었다. 난각강도는 14.5℃ 급수 처리구에서 증가하였고(p<0.05) 난각두께도 개선되는 경향을 보였지만 처리구간에 통계적 차이는 없었다. 또한 혈청과 간의 GH와 IGF-I 농도는 32.5, 24.0 및 14.5℃ 급여구 순서로 증가하였고(p<0.05), 코티코스테론은 감소되었는데 14.5℃에서 가장 개선되었다(p<0.05). 이외에도 혈중 AST와 콜레스테롤은 14.5℃의 음용수 처리구에서 24.0과 32.5℃에 비하여 유의적으로 감소하였고(p<0.05), HDL콜레스테롤, 단백질 및 글루코오스는 처리구간에 통계적 차이가 없 었지만, 혈중 중성지방은 14.5℃처리구에서 현저하게 감소되었다(p<0.05). 그러므로 여름철 14.5℃의 음용수를 급여하면 산란계에서 고온스트레스를 저감하므로서 생산성, 계란품질 및 혈액성상을 개선하였다.
The drinking water supply system applicable to the laying hen consists of air-water heat pumps, drinking water tanks, heat stroage tank, circulation pumps, PE pipes, nipples, and control panels. When the heat pump system has power of 7.7 to 8.7 kW per hour, the performance coefficient is between 3.1 and 3.5. The supply temperature from the heat pump to the heat stroage tank was stabilized at about 12±1°C, but the return temperature showed a variation of from 8 to 14°C. Stratified temperature in the storage tank appeared at 12.°C, 13.5°C and 14.4°C, respectively. The drinking water supply temperature remained set at 15°C and 25°C, and the conventional tap water showed a variation for 23°C to 30°C. As chickens grow older, the amount of food intake and drinking water increased. y = -0.0563x2 + 4.7383x + 8.743, R2 = 0.98 and the feed intake showed y = -0.1013x2 + 8.5611x. In the future, further studies will need to figure out the cooling effect on heat stress of livestock.
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are reportedly detected in public drinking water supplies. The U.S. Environmental Protection Agency (EPA) considers these compounds emerging contaminants and PFOA and PFOS were placed on EPA’s Contaminant Candidate List and health advisory levels for them in drinking water were established at 70 ppt. NSF created protocol NSF P473, which established minimum requirements for materials, design, construction and performance of drinking water treatment systems to remove PFOA and PFOS. The basic test protocol methodologies for NSF P473 are based on organic contaminant reduction protocols under NSF/ANSI Standard 53 for activated carbon systems, and on health effects contaminant reduction protocols under NSF/ANSI Standard 58 for reverse osmosis (RO) systems.
NSF developed NSF p477, which covers POU active media systems. Exact types and quantities of cyanotoxins vary. In 2015 USEPA set recommended health advisories for microcystins in drinking water at or below 0.3 μg/L for children less than 6 years old, and at or below 1.6 μg/L for older children and adults. NSF developed and characterized a natural source for microcystin compounds to be used as a contaminant challenge for the POU active media systems being tested. Analytical methodologies were refined to reliably identify and quantify microcystin at levels in the sub part per billion range. Laboratory column studies using various activated carbons were conducted to determine the relative retention of various microcystin congeners, to assess the appropriateness of various congeners for testing purposes.
물은 신체의 대부분을 구성하고 있는 기본 물질로서 생명유지의 필수 요소이다. 특히 WHO에서는 인류 건강유지의 1등 공신으로 깨끗한 물공급을 꼽고 있다. 우리나라는 산업화, 도심화를 통해 신규오염물질 발생이 증가하고 있으며 특히 먹는물의 경우 중금속 및 소독부산물 중심의 관리에서 난연제, 코팅제, 의 약물질 등 신규오염물질 관리에 주력하고 있다. 우리나라 먹는물 수질기준은 1963년 최초 도입된 이래 1984년, 1986년 개정 강화되었으며, 1995년 먹는물 관리법이 제정되었고 1997년 감시항목이 설정되 어 기준과 감시의 2원화된 관리체계가 유지되고 있다. 먹는물 수질기준은 외국 사례 도입방식에서 체계적 장기 모니터링을 통한 위해도 평가를 수행하여 기준을 강화하고 있으며 현재 60개 항목으로 확대 강화되었다.
Supplying clean and safe water to people is facing both quantitative and qualitative challenges. Due to climate change, access to freshwater becomes increasingly difficult, while pollution from various sources decreases the public trust in water quality. Managed aquifer recharge (MAR) which stores and uses surface water in aquifer is receiving attention as a new technology to secure freshwater. Recently, there is a global expansion in the attempt to combine general purification plants and hazard analysis and critical control point (HACCP) which manages all the process from raw material to consumer for food safety. This research is about an attempt to apply HACCP to the drinking water supply process using MAR to secure both quantity and quality of drinking water. The study site is a MAR plant being constructed in the downstream area of the Nakdong River Basin, South Korea. The incorporation of HACCP with MAR-based water supply system is expected to enhance the safety and reliability of drinking water.
The aim of these studies are to provide a basic data for the development of high-efficiency environmental improvement system that can parallel the cage(henhouse) and hot and cold potable water supply for increased summer heat stress relief and winter feed efficiency by optimal design. The cage area is 273m2. The air-to-water heat pump with 20RT capacity was used for heating and cooling. The control was used as an electric hot water boiler. For calculating heating load determined the cage size, materials, heat pump capacity, heating capacity, heat storage tank, and drinking water tank capacity etc. Therefore the capacity of heat pump was set-up using 20RT. The cage was built as a prefabricated panels henhouse of 13×21×4.5 m (width×depth×height). The heat storage tank and was drinking water tank capacity was constructed 3tons and 10 tons, respectively. In future, it is thought that optimal design considering the cage size and hen breeding scale is required.
This study was conducted to examine the byproducts formation characteristics at the water treatment plants which applying electrolysis as a disinfection process in Gangwondo, Korea. Total of forty plants located in Gangwon Province, Korea were selected for the study. Correlation between dissolved organic carbon(DOC) and SUVA254 was not clear. Among the species of the disinfection byproducts(DBPs), chlorate and trihalomethanes(THMs) accounted for 76% and 14% of DBPs, respectively. The effect of DOC or SUVA254 on DBPs formation was not clearly demonstrated. The increased amount of THMs due to the raw water bromide content was found primarily in the form of chloroform, and the percent fraction of BDCM(bromodichloromethane) and DBCM(Dibromochloromethnae) was relatively insignificant. When the value of SUVA254 was greater than 2 L/mg·m, the percent fraction of BDCM and DBCM decreased while percent fraction of CF(chloroform) increased.
In this study, to develop high-efficiency environmental improvement system that can be combined with hot and cold potable water supply to poultry air conditioning for the summer increase heat stress relief and winter feed efficiency through optimal design hwihan The aim of this study was to provide basic data. As a cage the size of the system installed is 100m2 test capacity 20RT district heating and cooling of air-to-water heat pump and the control was composed of electric hot water boilers. First of cage sizes for heating load design, materials, heat pump capacity, air capacity, storage tank, drinking water tank capacity, etc. were determined. The capacity of the heat pump was set to 20RT cage captive birds are erected as vertically and horizontally × height × (13 × 21 × 4.5m). Storage tank 3 tons and capacity of 10 tons potable water tank was designed. In the future, the size of the cage, designed according to the best breeding two numbers are needed.
Aquifer storage transfer and recovery (ASTR) is a type of managed aquifer recharge which entails injecting water into a storage well and recovering it from a different well. It has effects of natural purification when injected water passes through aquifer medium, and can be a good way of supplying water especially in a region with poor surface water quality. This study is about an on-going effort to introduce ASTR as a solution to source water problems in coastal areas. A pilot study is being conducted in the delta of the Nakdong River. A proactive management system is incorporated to ensure the water qulity in the process of drinking water process. The system is based on the Hazard Analysis and Critical Control Point (HACCP) which is a tool originated from the food industry in order to assess hazards and establish control systems for the safety of food product. In this paper, we analyze hazardous events which can occur in the entire water supply system using ASTR as a first step to the incorporation of HACCP to drinking water production process.
The number of viable microorganism in drinking water was monitored according to storage temperature and storage period. The number of general bacteria in underground water was 10²-10^5CFU/ml and that of coliform group was decreased after 7days. The number of general bacteria in bottle water was increased until 7days but decreased after that day. Coliform group in bottle water were detected only 1 sample. The number of general bacteria in purified water was 10³-10⁴CFU/ml and 10²-10⁴CFU/ml at 8 and 25, respectively. Coliform group were not detected in purified water.
In order to research the adsorption removal characteristics of trace organic by-products in disinfection of drinking water by biological activated carbon(BAC), water samples disinfected with Cl_2, O_3 and ClO_2 after treatment by fluidized-bed system with water added with humic acid(l0㎎/L) were investigated the formation and the removal of trihalomethanes (THMs), and the trace organic by-products by gas chromatography(GC) & gas chromatography/mass selective detector(GC/MSD). Control was used by activated carbon(AC) and water added with hurnic acid(HA). The results were summarized as follow ; The THMs removal effect of BAC by chlorination was in lower 90 % than that of control(HA), the sorts of oxidants formed by Cl_2, O3 and ClO_2 were that O_3 was very fewer than Cl_2 or ClO_2 and that ClO_2 was fewer than Cl_2 The trace organic by-products were esters and phthalates etc. Based on results above, it is concluded that BAC was appeared the more desirable adsorption-degradation removal characteristics than that of AC.