This paper proposes an algorithm for the Unrelated Parallel Machine Scheduling Problem(UPMSP) without setup times, aiming to minimize total tardiness. As an NP-hard problem, the UPMSP is hard to get an optimal solution. Consequently, practical scenarios are solved by relying on operator's experiences or simple heuristic approaches. The proposed algorithm has adapted two methods: a policy network method, based on Transformer to compute the correlation between individual jobs and machines, and another method to train the network with a reinforcement learning algorithm based on the REINFORCE with Baseline algorithm. The proposed algorithm was evaluated on randomly generated problems and the results were compared with those obtained using CPLEX, as well as three scheduling algorithms. This paper confirms that the proposed algorithm outperforms the comparison algorithms, as evidenced by the test results.
돼지의 체세포 핵이식(Somatic cell nuclear transfer,SCNT)은 인간에게 약리적 효과가 있는 단백질, 이종 간 장기이식(xenotransplantation)에 사용되는 장기, 질병 연 구 목적의 모델 동물을 제공한다. 특히 형질전환 돼지를 활용한 심장 이식이 세계 최초로 성공한 후 형질전환 돼 지 생산의 안정화는 다음 연구를 위한 중요한 점으로 대 두되고 있으나, 미니돼지의 체세포 핵이식 배아의 생산 효율은 아직 낮은 실정이다. 형질전환의 성공은 양질의 SCNT 배아 생산에서 시작되어야 한다. 이러한 SCNT 배 아의 생산 효율을 향상할 수 있는 요인 중에는 공여 세포 의 형태가 있으며, 성공적인 공여 세포의 생산을 위해서 는 종축에 따른 세포의 특성을 파악하여야 하고, 혈액형 의 차이에서 발생하는 문제점 해결을 위해 OO 타입의 선 별이 필요하다. 본 연구에서는 지속적인 계대 배양을 통 하여 공여 세포로 사용되는 미니돼지의 태아섬유아세포의 계대 배양 조건을 확립하고자 한다. 또한 미니돼지의 혈 액형을 PCR 기반으로 분석하여 분류하고 OO 타입의 선 별을 통하여 이종 간 이식에 용이하게 공여 세포의 조건 을 확립하였다. 이후 sgRNA(single guide RNA)를 사용하 여 CRISPR-Cpf1로 GGTA1(α-1,3 galactosyl-transferase) 유전자를 knock-out 한 미니돼지의 생산으로, 급성면역반 응을 유발하는 Gal(1,3)Gal epitope이 제거된 미니돼지의 세포 주를 구축 및 체세포 핵이식을 통해 GGTA1 knock-out 미니돼지를 생산하였으며, 이러한 연구는 이후 체세포 핵이식 및 이종 간 장기이식에 중요한 기초자료로 사용될 것이라고 생각된다.
This paper is proposing a novel machine scheduling model for the unrelated parallel machine scheduling problem without setup times to minimize the total completion time, also known as “makespan”. This problem is a NP-complete problem, and to date, most approaches for real-life situations are based on the operator’s experience or simple heuristics. The new model based on the Memetic Algorithm, which was proposed by P. Moscato in 1989, is a hybrid algorithm that includes genetic algorithm and local search optimization. The new model is tested on randomly generated datasets, and is compared to optimal solution, and four scheduling models; three rule-based heuristic algorithms, and a genetic algorithm based scheduling model from literature; the test results show that the new model performed better than scheduling models from literature.
본 연구는 기업 간 인수합병에서 피인수기업의 거래 가격이 인수기업의 기업 가치에 미치는 효과를 분석하였다. 이때 기업환경과 특성을 종합적으로 고려하기 위하여 산업 내 경쟁 수준과 피인수기업의 이종 산업 여부 등 두 가지 조절변수를 제안하였다. 본 연구의 모형을 검증하기 위하여 SDC Platinum에서 미국기업의 인수합병 관련 데이터를 수집하였고, 기업 관련 데이터는 WRDS Compustat에서 수집하였다. 2014년부터 2019년까지의 기 간을 대상으로 최종적으로 309개 기업에 대한 총 695건의 M&A 관련 데이터를 표본으로 선정하였다. 분석 결 과, 인수합병 시 거래 가격은 인수기업의 미래가치에 부정적인 효과를 미치는 것으로 나타났다. 그러나 인수기업 이 속한 산업 내 경쟁 수준이 높을수록 이러한 효과는 긍정적인 방향으로 상쇄되었다. 특히 인수합병 대상이 이 종 산업에 속한 기업일 경우, 그러한 상쇄 효과는 더욱 강해지는 것으로 나타났다. 본 연구는 인수합병의 거래가 격이 인수기업의 미래가치에 유의한 영향을 미치는 동시에, 그 효과가 산업 내 경쟁수준과 피인수기업의 이종 산 업 여부에 따라 조절된다는 사실을 계량적으로 입증했다는 점에서 학술적 의의를 가진다.
As the time and cost of body repair can be greatly incurred due to differences in individual technologies, body repair technology should be discussed based on data on general working standards and costs, and as new material technology is applied to the body, continuous learning and experiment on vehicle body repair technology is essential. Since the left and right apron and side members with SPR bonding technology are made of different materials, aluminum and high-strength steel, the restoration of the left and right apron side members should be considered technically, as well as safety and environmental pollution. In this study, we experiment with heterogeneous apron and side members applied with SPR bonding and analyze the results.
This study investigated variables for improving adhesive strength using laser surface treatment when bonding dissimilar materials using adhesives. adhesive strength analysis was performed for CFRP and Al6061 by laser irradiation intensity, and surface roughness was measured to analyze the related results. In the case of CFRP, the adhesive strength was good when the surface was not treated. In the case of Al6061, the adhesive strength was 25 MPa when the surface was treated with 20W, the maximum output of the laser surface treatment equipment, and the adhesive strength was improved by 125% compared to the untreated specimen. In addition, by measuring the surface roughness in the experiment, it was confirmed that the higher the surface roughness, the better the adhesive strength.
이종 업종의 집적을 통하여 편익을 창출하는 효과를 도시화경제라고 한다. 개별 상점의 입지 결정은 도시화경제의 영향을 받아 이루어지는 동시에, 도시화경제를 강화하기도 한다. 따라서 도시화경제에 대한 이해를 심화하는 것은 도시 내 상권의 공간구조 를 이해하기 위하여 중요하다. 그러나 이종 업종의 집적 패턴을 진단하기 위한 방법론에 관한 연구는 다소 부족하였다. 이 연구의 목적은 도시 공간상에서 이종 업종 점포 간 지리적 인접·분포 경향성을 추정하기 위한 분석방법론을 제안하는 것이다. 제시한 방법론은 다양한 업종의 공간적 군집을 통하여 형성되는 도시화경제의 핵심 단면을 실증적으로 파악하는데 유용한 수단으로 의의가 있다. 이를 위하여 서울시 마포구에 소재한 상점을 대상으로 실증 분석을 수행하였다. 이종 업종 구분은 8개의 대분류 기준을 적용하였다. 분석 결과 이종 업종이 지리적으로 인접하여 분포하려는 경향성이 전반적으로 뚜렷하게 나타났으며, 마포구 내 특정 지역에 이종 업종 간 공간적 연계성이 뚜렷하게 발견되었다. 이 연구에서 제시하는 분석방법론과 실증 분석 결과는 지역 상권 진단정보로 활용성이 있을 것으로 기대된다.
In this study, we have prepared a Ti-6Al-4V/V/17-4 PH composite structure via a direct energy deposition process, and analyzed the interfaces using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The joint interfaces comprise two zones, one being a mixed zone in which V and 17-4PH are partially mixed and another being a fusion zone in the 17-4PH region which consists of Fe+FeV. It is observed that the power of the laser used in the deposition process affects the thickness of the mixed zone. When a 210 W laser is used, the thickness of the mixed zone is wider than that obtained using a 150 W laser, and the interface resembles a serrated shape. Moreover, irrespective of the laser power used, the expected phase is found to be absent in the V/17-4 PH stainless steel joint; however, many VN precipitates are observed.
To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.
In this study, the failure characteristic of the center floor of a front-wheel drive vehicle was investigated according to material. UHSS, Al6061-T6, CFRP, and CFRP-Al were used as materials. As the analysis condition, a fixed support was applied to the rear surface of the center floor and a forced displacement of 2 mm/sec was applied to the front surface. As the result, when comparing with the equivalent stress and strain energy according to the material, it was found that UHSS, Al6061-T6, CFRP, and CFRP-Al were higher in the order. Also, when comparing with the equivalent strain due to the material, it was shown that the equivalent strain was high in the order of Al6061-T6, UHSS, CFRP and CFRP-Al. As for the damage characteristic of the center floor according to the material, it was found that the highest structural stability was obtained when UHSS was used. However, it was found that it was good to utilize Al6061-T6 in order to acquire the structural stability along with the structure with the lighter weight.
For surface hardening of a continuous casting mold component, a fundamental metallurgical investigation on dissimilar laser clads (Cu–NiCrBSi) is performed. In particular, variation behavior of microstructures and mechanical properties (hardness and wear resistance) of dissimilar clads during long-term service is clarified by performing high-temperature postclad heat treatment (temperature range: 500 ~ 1,000 ℃ and isothermal holding time: 20 ~ 500 min). The microstructures of clad metals (as-clads) consist of fine dendrite morphologies and severe microsegregations of the alloying elements (Cr and Si); substrate material (Cu) is clearly confirmed. During the post-clad heat treatment, the microsegregations are totally homogenized, and secondary phases (Cr-based borides and carbides) precipitated during the short-term heat treatment are also almost dissolved, especially at the heat treatment conditions of 950 ℃ for 500 min. Owing to these microstructural homogenization behaviors, an opposite tendency of the surface mechanical properties can be confirmed. In other words, the wear resistance (wear rate) improves from 4.1 × 10−2 mm3/Nm (as-clad condition) to 1.4 × 10-2 mm3/Nm (heat-treated at 950 ℃ for 500 min), whereas the hardness decreases from 453 HV (as-clad condition) to 142 HV (heat-treated at 950 ℃ for 500 min).
Recently, the use of non-ferrous metals has been increasing to lighten the weight of automobiles and parts. In particular, demand for non-ferrous alloy materials such as aluminum alloys and magnesium alloys is increasing. The purpose of this study is to calculate the optimization process of friction stir welding by using different materials of AA5052 and AA6061. By analyzing the reaction value of tensile strength and elongation by full factorial design and Custom Design Methodology. In other words, we analyzed the optimization process according to rotation speed, feed rate, tool angle and tool shape. In conclusion, the optimal process for tensile strength was achieved by using a tool with a rotation speed of 900 RPM, feed rate of 270, tool angle of 2.5° and a triangle tool. and The rotation speed was 1003 RPM, the feed rate was 314.5, tool angle of 1° and a triangle tool, it was able to get the maximum value of elongation when using a tool of the form.
In this study, the experiments and analyses were carried out in order to investigate the fracture characteristics on the adhesive at the specimen bonded with aluminum and aluminum-foam. The same conditions were given for the experiments and analyses. The results are investigated by the graph of reaction force according to displacement. It was found that the experimental and the analytical data were very similar to each other. On the basis of the data, the reliability of the analysis data could be confirmed. The notches were produced at the distances of 40, 110, 150, and 190 mm from the front of the test specimen, and the maximum reaction force was compared accordingly. It was found that the highest reaction force was generated at the front end of the adhesive and the lowest reaction force was found at the middle of the adhesive interface. Finally, when the equivalent stress in the test specimen was examined, it was found that the highest stress was obtained at the distance of 110 mm. It can be deduced. As the notch formation point are similar to the point when stress is dispersed as the adhesive is peeled off, it is possible to infer the high stress compared to other test specimens.
In this study, we investigated the properties of adhesive materials with different lightweight materials such as CFRP and Al-foam. The specimens were tested and analyzed using DCB (Double Cantilever Beam) specimens. In order to secure the reliability of the finite element method, the test and analysis were carried out, and the reliability of the finite element method was secured by using the graph of reaction force to displacement based on the experiment and analysis. The study on the adhesive failure characteristics according to the position of notch hole proceeded. Notch holes were generated at the locations of 40, 110, 150 and 190 mm from the beginning of the specimen near the bonding interface, and the analysis conditions used were the same as those used for securing reliability. The obtained study results are compared with reaction force and equivalent stress. In the case of reaction force, the overall tendency is similar but the difference in maximum reaction force is found. It was found that higher reaction forces appeared at the beginning than at the end of the bonding interface. When the equivalent stresses in the specimens were examined, the value of CFRP was seen to be 30 times higher as much as that of Al-foam.
The spray characteristics of two working fluids operating with a bi-fuel injector were investigated. A bi-fuel injector simultaneously sprays two working fluids, both of which possess different properties. An effervescent atomizer containing two separated aerator tubes was employed as the bi-fuel injector. Vegetable oil and kerosene were the working fluids. The mixing ratio and ALR were the experimental parameters. The mixing ratio is the mass fraction of vegetable oil in the total amount of working fluids. The ALR represents the ratio of the atomizing gas to the working fluid mass flow ratio. In order to examine spray characteristics, the spray angle, droplet size distribution, cumulative volume fraction, Sauter Mean Diameter and span factor were measured using a high resolution video camera and a Laser Diffraction Particle Analyzer. From the experimental results, spray angle is decreased with as the ratio of kerosene to vegetable oil in working fluid is increased. Regardless of ALR, SMD was the smallest when the only working fluid was kerosene and uniformity was the most stable when the only working fluid was vegetable oil.
ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and O2 mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and roomtemperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when O2 is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ± 3 V of the reverse and forward bias voltage is about 5.8 × 103, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.
This study discussed the effects of inclined interface location to apply the design of inclined interface of composite materials subjected to shear loading. The fracture parameters are analyzed by finite element method of ANSYS. As a results, If in case of the angle of inclination is 45 degrees, inclined interface is longer and the crack tip is closer, the less the crack suppression effect. If the inclined interface location is a more than twice the length of the inclined interface, the effect of suppressing crack propagation are constant regardless of the location. In case of the inclined interface is longer and the crack tip is closer, the cause of increase of energy release rate is a due to the increase of shear stress. If in case of the angle of inclination is 90 degrees, inclined interface is closer to the crack tip, the better the crack suppression effect. If the inclined interface location is a less than twice the length of the inclined interface, the effect of suppressing crack propagation are dominant. And if the inclined interface location is a more than twice the length of the inclined interface, crack suppression effect is gradually reduced.
Hole carrier selective MoOx film is obtained by atomic layer deposition(ALD) using molybdenum hexacarbonyl[Mo(CO)6] as precursor and ozone(O3) oxidant. The growth rate is about 0.036 nm/cycle at 200 g/Nm of ozone concentration and the thickness of interfacial oxide is about 2 nm. The measured band gap and work function of the MoOx film grown by ALD are 3.25 eV and 8 eV, respectively. X-ray photoelectron spectroscopy(XPS) result shows that the Mo6+ state is dominant in the MoOx thin film. In the case of ALD-MoOx grown on Si wafer, the ozone concentration does not affect the passivation performance in the as-deposited state. But, the implied open-circuit voltage increases from 576 oC to 620 oC at 250 g/Nm after post-deposition annealing at 350 oC in a forming gas ambient. Instead of using a p-type amorphous silicon layer, high work function MoOx films as hole selective contact are applied for heterojunction silicon solar cells and the best efficiency yet recorded (21 %) is obtained.