This study investigated the inactivation effect of intense pulsed light (IPL) on various packaging films. The UV-C transmittance irradiance varied depending on the packaging materials, with the control group having an irradiance of 3.959 W/m2. For the thinnest layer of 30 mm, polypropylene (PP) had an irradiance of 3.258 W/m2, polyethylene (PE) had an irradiance of 3.193 W/ m2, and oriented polypropylene (OPP) had an irradiance of 3.200 W/m2. In contrast, polyethylene terephthalate (PET) exhibited a significantly lower irradiance of only 0.065 W/m2 for its thinnest film thickness of 100 mm. The light transmittance of the packaging materials was similar, with values of 91.3%, 89.7%, and 89.5% for PP, PE, and OPP, respectively. In contrast, PET exhibited a significantly lower light transmittance of 1.8% compared to the other packaging materials. These findings have practical implications for the food packaging industry. According to the packaging film material, the sterilization effects showed that the E. coli sterilization effect of PP was the highest, followed by PE and OPP, which were similarly effective. At the same time, PET exhibited the lowest sterilization effect. For PP film with a thickness of 30 mm, a 6.2 log reduction in the E. coli population was observed after 20 s of IPL treatment. Ultimately, inactivation was achieved after 60 seconds. Both PE and OPP films, which had a thickness of 30 mm, showed a 5.9 log reduction in E. coli after 30 s of IPL treatment, followed by complete inactivation after 60 s. The inactivation rate for PP, PE, and OPP films showed minimal variation regardless of thickness, although it gradually decreased with increasing thickness. For PET, achieving a 1 log reduction in E. coli required 180 s of IPL treatment at 100 mm thickness and 210 s at 120 mm thickness, indicating the influence of film thickness on inactivation rate. Even after 300 s of IPL treatment, the inactivation effect for PET remained around 1.5 log, the lowest among all packaging film materials.
일반적으로 속도 펄스를 가진 지반운동이 속도 펄스가 없는 지반운동에 비하여 구조물에 보다 큰 손상을 줄 수 있다고 알려져 있다. 지진가속도기록으로부터 속도 펄스의 유무의 판정과 이를 정량화하는 연구가 현재 많이 진행되어 오고 있다. 기존 지진기록들을 단 층으로 떨어진 거리를 기준으로 원거리 지진과 근거리 지진으로 구분하였다. 또한, 근거리 지진은 속도 펄스의 유무를 정량화하여 펄 스를 가진 지진과 펄스를 가지지 않은 지진으로 구분하였다. 최종적으로 각 지진그룹별로 40개의 원거리지진, 40개의 속도 펄스를 가 진 근거리 지진과 40개의 속도 펄스를 가지지 않은 근거리 지진을 선정하였으며, 총 120개 지진가속도 기록을 지진취약도 평가를 위 한 지진해석에 사용하였다. 세 그룹의 지진을 이용하여 납-고무받침과 탄성받침을 가진 두 종류의 예제교량에 대한 지진응답을 평가 하여 확률론적 지진요구도 모델을 작성하였다. 확률론적 지진요구도 모델을 이용하여 지진취약도 해석을 수행하여 속도 펄스의 유무 에 따른 지진취약도 영향을 분석하였다. 지진파의 속도 펄스 유무에 따른 지진취약도 곡선의 비교 결과로부터, 속도 펄스를 가진 지진 의 지진취약도가 속도 펄스가 없는 지진의 지진취약도가 약 3배~5배 정도 정도 크게 나타난다. 이는 속도 펄스를 가진 지진의 경우가 그렇지 않은 지진의 경우에 비하여 교량의 손상 피해가 크다는 것을 의미한다.
Recently, research on MAX phase materials has been actively conducted. M of MAX phase is made of early transition metal element, A is A-group (IIIA or IVA) element, and X is Carbon or Nitrogen. It has the chemical formula of MnAXn-1, and is called the 211, 312, and 413 groups according to the indices(n=1,2,3). MXene material is characterized by having a layered structure of 2D structure like graphene by etching the element corresponding to A-gruop in the MAX phase. So far, MXene materials have been reported to be applied in various fields. In particular, research is being actively conducted as anode material for Li secondary batteries, electromagnetic wave shielding material, and hydrogen storage alloy material. In the pulse energization active sintering method, the surface of the powder particles is cleaned and activated more easily than the conventional electrical sintering process and material transfers at both the macro and micro level, so that a high-quality sintered body can be obtained at low temperature and fast time. In this study, the MAX phase was synthesized in a short time by using a pulse current active sintering apparatus, and the MXene material was prepared from the synthesized MAX phase and the structure was analyzed.
자기공명영상장치(magnetic resonance, MR)/양전자 방출 단층촬영 장치(positron emission tomography, PET)는 두 가지 의료장치가 결합한 하이브리드 시스템으로써 MR의 해부학적 정보와 PET의 기능적 정보를 동시에 획득할 수 있는 최신 의료장치이다. 일반적으로 MR/PET의 우수한 팬텀 영상의 질 획득과 평가를 위하여 팬텀 내에 전기전도도가 낮은 액체 물질과 방사성동위원소를 주입하고, UTE MR 펄스 시퀀스를 적용한 감쇠 보정된 PET 영상을 획득한다. 본 연구의 목적은 MR/PET 전용 팬텀에서 물 대체물질로써 NaCl과 NaCl+NiSO4 물질에 따른 UTE MR 펄스 시퀀스를 획득하고, 감쇠 보정된 PET 영상의 질을 평가하고자 한다. 정량적 분석을 위하여 대조도 회복비(contrast recovery, CR), 신호대잡 음비(signal to noise ratio, SNR), 변동 계수(coefficient of variation, COV)를 적용하였다. NaCl 물질 기반 UTE MR 펄스 시퀀스를 적용한 PET 영상의 질이 CR은 1.38배, SNR은 1.18배가 증가하였고, COV는 1.18배 감소함을 확인할 수 있었다. 결론적으로, MR/PET 전용 팬텀을 활용한 신호의 획득 가능성을 확인하였고, UTE MR 펄스 시퀀스는 해부학 적 정보와 PET 영상의 질 향상에 필수적임을 확인할 수 있었다.
최근 자기공명영상 획득을 위한 시뮬레이션 도구가 개발되어 오랜 시간이 소요되는 임상 연구를 대체할 수 있게 되었다. 이에 본 연구에서는 MRiLab 시뮬레이션을 사용하여 부가인자인 에코 시간의 변화에 따라 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하여 영상의 신호 및 노이즈의 변화를 정량적으로 평가하고 경향성을 파악하고자 한다. 이를 위해 실제 MRI 장비를 기반으로 새롭게 개발된 MRiLab simulation tool을 사용하여 모든 파라미터를 같게 고정한 후 TE만을 20~95 ms범위에서 5 ms 간격으로 각각 설정하여 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하였다. 획득된 영상들의 신호 및 노이즈 특성 변화를 정량적으로 평가하기 위해 신호대잡음비 및 대조대잡음비를 측정하였다. 결과적으로, TE가 증가할수록 SNR은 감소하고 CNR은 증가하는 경향을 보였다. 이는 TE가 증가할수록 관심 영역으로 설정된 뇌척 수액 신호는 일정하게 유지되는 반면 노이즈는 증가하였으며, 백그라운드로 설정된 백질의 경우 신호가 감소함과 동시에 노이즈가 증가한 것이 원인으로 분석된다. 결론적으로, 진단에 용이한 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하기 위해서는 그 목적에 따라 적합한 TE를 설정하는 것이 중요함을 확인하였다.
본 연구는 고속 스핀에코 기법의 T2 강조영상 획득에 있어 온도 상승을 최적화하기 위한 에코 개수(echo train length, ETL) 25를 기반으로 재자화 펄스의 범위에 따른 온도 변화와 이에 따른 신호대잡음비(signal to noise ratio, SNR) 분석을 통한 합리적인 영상 파라미터를 제시하고자 하였다. 온도 변화측정은 수소원자 공명주파수(proton resonance frequency shift. PRF) 기법을 활용했으며, 재자화 펄스의 각도(flip angle, FA)에 따른 온도 상승을 측정하였다. 온도 변화는 재자화 펄스 90도 인가 시에 약 0.202±0.023°C로 증가했으며, 이는 최소 FA인 60도(약 0.196±0.024°C)와 가장 유사하게 나타났다. 또한, 그 영상의 SNR은 FA 120도과 150도에 비해 FA 90도에서 약간 감소하는 경향이 나타났지만(약 12.5%), FA 180도와 비교하여 큰 차이는 발생하지 않았다 (FA 90도=349.66±3.68; FA 180도=357.68±3.21). 이 결과들은 고속스핀에코 기법에서 ETL 25를 사용한 빠른 영상획득 시간을 기반으로 합리적인 영상신호와 재자화 펄스에 의한 최소 온도 상승을 나타내며, 이는 인체 MR 안전기준을 충분히 보장하는데 기여할 수 있다. 특히, ETL 25와 결합된 90도 FA 사용은 가속화된 영상획득 시간, 합당한 T2 영상의 SNR, 그리고 최적의 인체 온도 증가를 위한 고속스핀에코 기법에서의 최적화된 영상 파라미터가 될 수 있을 것으로 사료된다.
본 연구에서는 처리용기의 재질에 따른 광펄스의 살균 효과에 대해서 알아보았다. 처리용기의 재질에 따른 UV-C 의 광량은 대조구는 3.595W/m2이었으며, 두께 1 mm에서 석영은 3.358W/m2, 아크릴은 0.878W/m2, 그리고 유리는 0.060W/m2였으며, 빛의 투과율은 석영은 93.4%, 아크릴은 24.4%, 유리는 1.7%로 나타났다. 처리 용기 재질에 따른 살균 효과는 석영은 처리용기의 두께와 상관없이 대조구와 동일한 살균 효과를 보였으며, 아크릴은 1 mm 두께에서 60초 처리 후 1.1 log 사멸하였으며, 180초 처리 후에는 5.0 log의 사멸효과를 보였으며, 두께가 증가함에 따라 살균 효과가 현저히 감소하였다. 유리는 두께와 관계없이 살균 효과가 거의 없었다. 사멸패턴은 유리를 제외하고는 모두 bi-phasic의 형태를 보였으며, 사멸속도상수와 D 값은 대조 구는 k1값은 0.287 s−1이었으며, k2값은 0.072 s−1이었고, D1 은 8.02 s였으며, D2는 31.87 s였다. 1 mm의 두께에서 석영 은 k1은 0.284 s−1, k2는 0.069 s−1, 아크릴은 k1은 0.018 s−1, k2는 0.042 s−1이었고, 유리는 k는 0.004 s−1이었다. 두께 1 mm에서 D값은 석영은 D1=8.11 s, D2=33.87, 아크릴은 D1 =127.94 s, D2=54.83 s, 유리는 D=575.75 s로 나타났다.
Ti-based alloys are widely used in biomaterials owing to their excellent biocompatibility. In this study, Ti- Mn-Cu alloys are prepared by high-energy ball milling, magnetic pulsed compaction, and pressureless sintering. The microstructure and microhardness of the Ti-Mn-Cu alloys with variation of the Cu addition and compaction pressure are analyzed. The correlation between the composition, compaction pressure, and density is investigated by measuring the green density and sintered density for samples with different compositions, subjected to various compaction pressures. For all compositions, it is confirmed that the green density increases proportionally as the compaction pressure increases, but the sintered density decreases owing to gas formation from the pyrolysis of TiH2 powders and reduction of oxides on the surface of the starting powders during the sintering process. In addition, an increase in the amount of Cu addition changes the volume fractions of the α-Ti and β-Ti phases, and the microstructure of the alloys with different compositions also changes. It is demonstrated that these changes in the phase volume fraction and microstructure are closely related to the mechanical properties of the Ti-Mn-Cu alloys.
Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC–Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 μm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.
본 연구에서는 파일럿 규모 광펄스 처리 장비를 이용한 광펄스 처리의 해수에 오염된 Escherichia coli에 대한 저 해 효과를 확인하였다. 광펄스 처리를 이용한 해수 살균 시에는 처리 용량이 70 L 인 반응기를 이용하여 약 160 L 의 해수를 연속식으로 처리하였다. 처리 frequency와 반응기로 유입되는 해수의 유속은 각각 5 Hz와 15 L/m으로 고 정하였고, 처리 전압은 1,800, 2,000, 그리고 2,400 V로 설정하였다. 처리 전압이 1,800 V에서 2,000 V, 그리고 2,400 V로 증가할 때 해수에 접종된 E. coli 저해 정도는 3.2 ± 0.9에서 4.8 ± 0.3, 그리고 7.15 ± 0.5 log CFU/mL로 증가하 였다. 광펄스 처리에 따른 해수 살균 시 해수의 온도 변화(ⵠT)는 처리 전압 1,800, 2,000, 그리고 2,400 V에서 각각 0.0, 1.2, 그리고 1.6 ℃로 확인되었다. 본 연구를 통해 광펄스 처리가 해수 내 E. coli를 효과적으로 저해시킬 수 있 는 비가열 살균 기술임을 확인할 수 있었다.
광펄스(IPL)와 콜드 플라즈마(CP) 연속 처리의 플라스틱 용기에 포장된 양배추 슬라이스의 식중독균 저해에 대한 효과를 연구하였다. 처리 시료는 양배추 슬라이스에 각 미생물을 접종 후 polypropylene (PP) container (225 mL, 3 cm 높이)에 15 g을 담아 PP 필름으로 열 접합하여 준비하였다. IPL 처리 시간과 처리 전압은 각각 2분 그리고 1500 V이 었고 CP 처리 시간과 처리 전압은 2분 그리고 24.5 kV이었으며 IPL 처리 중 shaking과 연속 처리 순서(IPL-CP 또는 CP-IPL)를 변수로 하여 Salmonella 저해를 확인하였다. 또한 단독 IPL 그리고 단독 CP 처리 시간을 연속 처리 시간과 같은 4분으로 하여 각 단독 처리와 연속 처리의 양배추 슬라이스에 접종된 Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, 그리고 Bacillus cereus spore에 대한 저해 효과를 비교하였다. IPL 처리 중 shaking은 단독 IPL 처리 그리고 IPL-CP 처리시 양배추 슬라이스의 Salmonella 저해도를 각각 0.7 log CFU/g만큼 증가시켰다(p<0.05). 또 한 IPL-CP 그리고 CP-IPL 처리시 양배추 슬라이스의 Salmonella는 각각 2.6 ± 0.2 그리고 3.1 ± 0.2 log CFU/g만큼 저 해되어 이후 미생물별 실험에서는 처리 중 shaking을 하고 CP-IPL 순서로 연속 처리하였다. 결정된 조건에서 단독 IPL, 단독 CP, 그리고 CP-IPL 처리는 Salmonella, E. coli O157:H7, L. monocytogenes, 그리고 B. cereus spore를 각각2.2 ± 0.3, 1.4 ± 0.4, 그리고 3.1 ± 0.2 log CFU/g, 2.2 ± 0.3, 1.5 ± 0.2, 그리고 2.9 ± 0.3 log CFU/g, 2.3 ± 0.3, 1.5 ± 0.2, 그리고 3.2 ± 0.1 log CFU/g, 그리고 1.6 ± 0.3, 1.3 ± 0.2, 그리고 2.1 ± 0.1 log spores/g만큼 저해 시켜 미생물 종류에 상관없이 연속 처리가 단독 처리보다 유의적으로 높은 저해도를 갖는 효과적인 미생물 저해 처리임을 알 수 있었다 (p<0.05). 단독 IPL, 단독 CP, 그리고 CP-IPL 처리된 양배추 슬라이스 색도는 처리하지 않은 양배추 슬라이스의 색도 와 유의적인 차이를 보이지 않았다(p>0.05). 본 연구는 IPL과 CP 연속 처리가 플라스틱 용기에 포장된 양배추 슬라이 스의 미생물을 양배추의 색 변화 없이 단독 처리보다 효과적으로 저해시킬 수 있는 기술임을 보여주었다.
Porous Fe-Cu-C alloy was sintered by Pulsed Current Activated Sintering(PCAS) method within 10 min from horizontal ball mill mixture. The relative density of Fe-20wt.%Cu-0.8wt.%C alloy fabricated by PCAS method was 91%. The average hardness of the Fe-20wt.%Cu-0.8wt.%C alloy was HRB 92. The phase analysis, microstructure and composition information of the sintered alloy were investigated by using XRD, FESEM, EDAX.
The present study demonstrates the effect of magnetic pulse compaction and spark plasma sintering on the microstructure and mechanical property of a sintered W body. The relative density of green specimens prepared by magnetic pulse compaction increases with increase in applied pressure, but when the applied pressure is 3.4 GPa or more, some cracks in the specimen are observed. The pressureless-sintered W shows neck growth between W particles, but there are still many pores. The sintered body fabricated by spark plasma sintering exhibits a relative density of above 90 %, and the specimen sintered at 1,600 oC after magnetic pulse compaction shows the highest density, with a relative density of 93.6 %. Compared to the specimen for which the W powder is directly sintered, the specimen sintered after magnetic pulse compaction shows a smaller crystal grain size, which is explained by the reduced W particle size and microstructure homogenization during the magnetic pulse compaction process. Sintering at 1,600 oC led to the largest Vickers hardness value, but the value is slightly lower than that of the conventional W sintered body, which is attributed mainly to the increased grain size and low sintering density.
Although membrane bio-reactor (MBR) has been widely applied for wastewater treatment plants, the membrane fouling problems are still considered as an obstacle to overcome. Thus, many studies and commercial developments on mitigating membrane fouling in MBR have been carried out. Recently, high voltage impulse (HVI) has gained attention for a possible alternative technique for desalting, non-thermal sterilization, bromate-free disinfection and mitigation of membrane fouling. In this study, it was verified if the HVI could be used for mitigation of membrane fouling, particularly the internal pore fouling in MBR. The HVI was applied to the fouled membrane under different conditions of electric fields (E) and contact time (t) of HVI in order to investigate how much of internal pore fouling was reduced. The internal pore fouling resistance (Rf) after HVI induction was reduced as both E and t increased. For example, Rf decreased by 19% when the applied E was 5 kV/cm and t was 80 min. However, the Rf decreased by 71% as the E increased to 15 kV/cm under the same contact time. The correlation between E and t that needed for 20% of Rf reduction was modeled based on kinetics. The model equation, E1.54t = 1.2 × 103 was obtained by the membrane filtration data that were obtained with and without HVI induction. The equation states the products of En and t is always constant, which means that the required contact time can be reduced in accordance with the increase of E.