This study investigated the operating principles of colorimetric freshness indicators, particularly those for relative humidity (RH) and hydrogen sulfide (H2S), and evaluated the applicability of commercially available indicators for food use. The findings not only provide a deeper understanding of how these indicators respond to substances, such as carbon dioxide, volatile basic nitrogen, sulfides, water activity, and ethylene gas, which are produced during quality changes in food, but also pave the way for the development of new food safety technologies. The RH indicator functions by utilizing a dye that undergoes a chemical structural change when reacting with moisture. The H2S indicator uses a dye that changes color upon detecting H2S or volatile basic nitrogen produced when food spoils. Commercial RH indicators effectively indicated changes in the water activity of almonds, pastries, and red pepper powder; however, their ability to predict them diminished during storage. Commercial H2S indicators exhibited a stronger correlation between color change and volatile basic nitrogen levels in exposure to light than without light, as demonstrated when applied to mackerel and clam. Additionally, at the point of spoilage, the degree of color change in the H2S indicators was more distinct in clam than mackerel. Although commercial RH and H2S indicators are available, they must be sensitive, accurate, and irreversibly developed in response to changes in the target food for effective application.
Heavy metal ions pollution has become of worldwide critical concern, thus, it is particularly important to monitor it in the environment and food for ensuring human health. In this study, p-phenylenediamine and 2-mercaptothiazoline were used to prepare nitrogen (N) and sulfur (S) co-doped carbon dots (N/SCDs) for fluorescent and colorimetric detection of Cu2+. The fabricated N/SCDs with bright green fluorescence showed excellent optical characteristics and favorable water solubility. In an aqueous system, a significant fluorescence quenching of N/SCDs at 512 nm is obtained in the presence of Cu2+. It also caused a significant colorimetric response with the color of prepared N/SCDs solution changed from colorless to yellow. Under optimal conditions, the analytical results showed that the linear range spanning from 5 to 400 μM, with a detection limit of 0.215 μM in fluorescence and 0.225 μM in colorimetric detection. In addition, N/SCDs displayed high selectivity toward Cu2+. No obvious interference was observed over other metal ions. Furthermore, we have also used N/SCDs to monitor Cu2+ in tap and lake water. The recovery of Cu2+ ranged between 89.6% and 113.1%. Exhibiting remarkable sensitivity and selectivity, the designed sensor offers a promising detection method for Cu2+ detection in the real sample.
With respect to the geologic repository, intrusion of groundwater has been considered as a major factor that can transfer radionuclides to the natural environment. Moreover, the migration of radionuclides in the natural groundwater system is significantly influenced by the interaction between the radionuclides and groundwater constituents. Among various hydrogeochemical reactions, hydrolysis is one of the major reactions that can affect the aqueous solubility of radionuclides. Therefore, a precise understanding of relevant chemical thermodynamic behavior is of cardinal importance for the reliable prediction of migration/retardation behavior of radionuclides in the natural groundwater system. The objective of the present work is to investigate the solubility behavior of Nd(OH)3(s) to provide relevant chemical thermodynamic data of Nd(III) as a chemical analogy of major radiotoxic elements such as Am(III) and Cm(III). All the experiments were performed with Ar gas-filled glovebox under inert atmospheric condition. The aqueous Nd(III) solution was prepared by dissolution of 0.5 g NdCl3·6H2O (Sigma-Aldrich) in 10 ml of deionized water. The Nd(III) solid phase was precipitated by dropwise addition of ca. 10 ml of 4 M NaOH (Sigma-Aldrich). The Nd(III) precipitate was identified to be crystalline Nd(OH)3(s) nanorod by using XRD and TEM. For the solubility experiment, the solid Nd(OH)3(s) was equilibrated at the pH range from 5.0 to 9.0 at 0.1 M NaCl condition. The total concentration of the Nd(III) was quantified by using UV/Vis absorption spectroscopy and ICP-MS after the phase separation. In the present work, the solubility behavior of the solid Nd(OH)3(s) phase was investigated by using colorimetric analysis. The chemical thermodynamic data obtained in this study are expected to enhance the reliability of solubility prediction for the trivalent lanthanides and actinides.
As the demand for the monitoring of VOCs increases, various unpowered colorimetric sensors are being developed, but the performance evaluation method of the developed sensors has not been systematically established. In this study, the device, experimental process, and data calculation methods for the performance evaluation of the colorimetric sensors were proposed. An aluminum chamber (70W× 128 L × 40 mm H) was designed to expose the sensor to a constant concentration of VOCs. In addition, an experimental apparatus was devised to evaluate the effect of environmental factors (temperature and humidity) affecting the ability of the sensor to detect VOCs. To calculate the color change value of the sensor corresponding to the concentration of VOCs, the ‘peak wavelength method’ that analyzes the wavelength of the highest intensity for high-concentration VOCs and the ‘spectral centroid method’ using a weighted arithmetic average for low-concentration VOCs were used. As a result of evaluating the ability of the colorimetric sensor to detect VOCs, which was made of polydimethylsiloxane (PMDS) by the method proposed in this study, the wavelength change values (bandgap shift) of the sensor for 1,000 ppm of benzene, toluene, oxylene, and acetone were 0.898 nm, 2.304 nm, 5.775 nm, and 0.249 nm, respectively. The precision was calculated by repeatedly measuring the sensing ability of the sensor 5 times for each type of VOCs. The precision of the sensor responses to benzene, toluene, o-xylene, and acetone were 15.23%, 7.84%, 4.14%, and 30.00% RSD, respectively. The method proposed in this study can be used to evaluate the performance of various types of VOCs colorimetric sensors.
급격한 산업화와 인구수 증가로 인한 환경 수질 오염이 발생하고 있다. 더불어 날씨 패턴의 변화로 인해 빗물이 부족해지자, 폐수를 깨끗한 물로 재활용하기 위한 요구가 나날이 늘어나고 있다. 색변화를 이용한 수중 속 중금속 검출은 아주 간단하고 효과적인 기술이다. 본 논문에는 멤브레인을 이용한 수은 이온 색검출에 대해 자세하게 논의되어 있다. 셀룰로 스, 폴리카프로락톤, 키토산, 폴리설폰 등의 멤브레인이 금속 이온 검출을 지지체로서 사용되었다. 지지체로서 사용된 멤브레 인들은 나노 섬유를 기반으로 하며 표면적이 크며, 중금속 검출의 활성 부위로 사용하기에 탁월하다. 나노 섬유를 기반으로 한 재료는 에너지, 환경, 그리고 바이오메디컬 연구에서 다양하게 응용될 수 있다. 나노 섬유로 이루어진 멤브레인들은 폴리머에 있는 적용기를 많이 받아들일 수 있으며, 표면적이 넓고 다공성이라는 장점이 있다. 이로 인해 멤브레인의 표면 구조를 변화시키거나 리간드를 섬유 표면에 부착해 나노 입자 결합을 더 쉽게 해준다.
최근 오염물질 수위의 급격한 상승세와 더불어 가속화되는 자연환경 파괴로 인해 다양한 환경 속에 쌓이는 오염 물질의 검출 및 모니터링은 현대 사회의 중요한 미션 중 하나로 자리 잡았다. 본 논문에는 멤브레인 기반의 광학 센서를 활용한 미량 오염물질 검출에 대한 최근 연구 동향이 요약되어 있다. 본 논문에 포함된 연구들은 섬유소로 이루어진 멤브레인을 검출을 위한 플랫폼으로 사용하였으며, 금속 나노 입자나 형광단을 색 변화 검출을 위해 이용하였다. 제조된 광학 센서들은 모두 적절하거나 특출한 수준의 감도를 보였고, 대부분의 센서에서 타겟 물질이 아닌 이온이나 물질에는 반응하지 않는 정확성 또한 확인되었다. 검출 플랫폼으로 이용된 섬유소 멤브레인의 물리적, 화학적 특성들은 멤브레인 합성 방법이나 색 변화를 위한 광학 물질 등을 바꾸는 방법을 통해 각 연구의 목적에 맞추어 최적화될 수 있었다. 또한, 멤브레인을 기반으로 하여 제조 된 센서들은 운반이 편리하고 기계적 성질이 강해 현장에서 바로 오염물질을 검출할 수도 있다는 사실이 제시되었다. 이러한 장점 덕분에 멤브레인 기반 센서들은 식용수에서 검출된 중금속의 정량화와 자연 수질환경에서 발견되는 미량 중금속 및 유독성 항생제의 감지 등 다양한 목적을 위해 활용될 수 있었다. 몇몇의 연구에서 제조된 센서들은 항균성이나 재활용성 또한 나타내었다. 대부분의 센서들이 타겟 물질을 감지한 후 육안으로도 식별 가능한 색 변화를 보였으나, 본 논문에 포함된 많은 연구들은 형광 발산, UV-vis 분광학, RGB 색 강도 차이 등을 비교 분석한 더 상세한 검출 결과를 제시하였다.
본 연구에서는 시판되고 있는 혈청 내 AChE가 acetylthiocholine과 반응하여 GNP에 aggregation 일으키는 원리를 이용하여 신선채소 농산물 중에 저농도 농약을 신속하고 간편하게 분석할 수 있는 비색-신속 농약 검출법을 개발하는 연구를 수행하였다. 먼저 비색-신속 농약 검출법의 최적화를 위해 GNP 입자의 크기에 따른 응집정도 를 확인하여 15~20 nm 직경의 GNP를 선정하였고, 혈청의 희석배수와 acetylthiocholine의 농도를 확인하여 GNP 응집 차이가 가장 큰 혈청 1000배 희석과 acetylthiocholine 1 mM을 최적화 조건으로 선정하였다. 비색-신속 농약 검출법의 평가를 위해 최적화된 비색농약분석법을 이용하여 유기인계 농약은 dimethyl amine으로 카바메이트계 농약은 carbofuran으로 민감도를 분석한 결과 모두 7.5 ng/mL 까지 검출이 가능한 것으로 확인되었으며 이는 기존의 비색-신속 농약 검출법과 비교했을 때 높은 민감도와 특이성을 나타내었다. 농약 이외에 화학물질인 곰팡이독소 등에 대한 반응성은 확인되지 않아 높은 특이성을 나타내었 다. 또한 상추, 깻잎, 양상추에 대한 시료 전처리법을 확 립하고 임의로 오염시킨 3종(상추, 깻잎, 양상추)의 농산물에 대해서 회수율을 확인한 결과유기인계와 카바메이트계 농약을 83.85~133.16% 정도의 회수율이 확인되었다. 이상의 결과 볼 때 본 연구에서 개발한 비색-신속 농약 검 출법을 이용한다면 시판 농산물의 잔류농약을 신속하고 민감도 높게 검출할 수 있을 것으로 판단된다.
The outbreaks of foodborne diseases associated with bacterial contamination are still critical issues all over the world. To ensure food safety, the diagnosis of pathogenic bacteria on site at early state of contamination are required. Escherichia coli O157:H7 (E. Coli O157:H7) is one of the major factor causing foodborne diseases. We introduce a sandwich type colorimetric detection method integrated with chitosan-coated starch magnetic polymer beads(CS@SMBs) that can separate and concentrate bacteria in aqueous environment. For signal amplification, horseradish peroxidase-conjugated antibody (HRP-Antibody) and 3,3',5,5'- tetramethylbenzidine (TMB) were employed as enzyme label and chromogenic substrate, respectively. We demonstrate that CS@SMBs not only show a good magnetic sensitivity, but also can capture a variety of bacteria regardless of Gram-negative and Gram-positive, which offer possibility for separation of the broad range of bacteria from food matrix. Our approach successfully captures E. coli O157:H7 with detection limit of 101 CFU/mL through naked eye, making promise of fast, on-site, and sensitive detection of pathogenic bacteria.
본 연구는 친환경적이고 감성적인 패션상품의 색채기획을 위한 자료를 제공하고자 수행되었다. 쪽과 괴화로 복합 염색 후 무매염 견직물과 4종의 매염제(Al, Cu, Fe, Zn)를 처리한 견직물에 대하여 색채특성을 측정하였다. 또한 복합염색 후 매염처리된 연두색 견직물에 대하여 여대생을 대상으로 색채감성과 색채 선호도를 조사하였으며, 색채 특성과 색채감성이 색채 선호도에 미치는 영향을 분석하였다. 쪽/괴화로 복합염색된(무매염) 견직물은 선 염색한 쪽 농도가 10 g/ℓ이면 녹색, 쪽 20 g/ℓ을 사용하면 청록색을 나타내었으며, 4종의 매염제를 사용하여 처리시 거의 모든 경우 연두색을 나타내었다. 연두색을 나타내는 복합염색된 견직물 10종의 색채감성을 요인분석한 결과, 유쾌성, 품위성, 편안성 요인으로 분류되었으며, 이러한 색채감성은 쪽 농도와 매염제의 종류에 따라 대부분 유의한 차이를 보였다. 또한 복합염색된 연두색 견직물의 색채특성과 색채감성요인 간에는 대부분 유의한 상관성을 보여, L*값, b*값, C*값이 크고 a*값이 작을수록 유쾌성과 편안성 감성을 더 강하게 느끼며, L*값이 작고 a*값이 클수록 품위성 감성을 더욱 느끼는 것으로 나타났다. 따라서 쪽과 괴화로 복합염색하고 매염처리한 연두색 견직물의 색채감성요인을 예측변수로 활용할 수 있는 색채 선호도 예측 회귀식이 제안되었다.
Gas detection is necessary for various reasons, including the prevention of gas leakages and the creation of necessary environmental conditions. Among the gas detection methods, leakage of gas can be confirmed using materials that undergo color changes that are easily distinguished by the naked eye. Metal nanoparticles (NPs) experience variations in their absorption wavelengths under the localized surface plasmon effect (LSPR) with mechanical stresses, which change the distance between NPs. In this study, we attempted to detect the presence of gas utilizing the LSPR-related color change of a chain of Au NPs. The assembly of Au NPs, arranged in a chain shape, experienced a color change from dark blue to purple with a change in the distance between the NPs by applying a physical force, i.e., compression, stretching, and gas pressure. As the force of compression and the degree of stretching increased, the absorption wavelength shifted from doublet peaks at 650 and 550 nm to a singlet peak at 550 nm. Further, applying gas pressure caused an identical color change. With this result, we propose a method that could be applied to all gases that require detection based on gas pressure.
This study was carried out in order to provide useful data for planning fabrics of summer eco-friendly fashion products. The fabrics used in this study were four cellulose fibers: cotton, cotton/mulberry blended, flax, and flax/lyocell blended. Dyeing with natural indigo was carried out under three different reducing conditions (i.e., general, eclectic, and eco-friendly) that have different reducing agent and pH levels, and hydrosulfite and glucose were used as a reducing agent. The dye uptake (K/S value) of fabrics dyed with natural indigo by a reducing condition was the highest at 660nm. Regardless of the fabrics, dye uptake was the highest under the general reducing condition and the lowest under the eco-friendly reducing condition. Under different reducing conditions, the dye uptake of natural indigo fabrics with the maximum absorption wavelength indicated a difference. The colorfastness of cellulose fabrics that were dyed with natural indigo had a rate of 4 to 5 except for rubbing fastness, which indicated good colorfastness. Additionally, natural indigo-dyed cotton and flax fabrics had good antibiosis. When the color characteristics of fabrics dyed with natural indigo were measured, all of the three reducing conditions created purple blue (PB) colors, and the color characteristics of dyed fabrics by reducing condition and fabric showed significant differences.