과불화화합물은 소수성, 소유성, 내열성의 우수한 물성을 기반으로 다양한 산업군에 활용되어 왔으나, 환경 내 잔류성과 생체 독성으로 인해 음용수를 통한 인체 노출이 중요한 공중보건 문제로 대두되고 있다. 본 연구는 음용수 내 과불화화합물 규제의 국제적 규제 동향을 분석하고, 규제 설정 원리와 과학적 배경을 고찰하는 데 목적을 둔다. 먼저 미국, 유럽연합 등 주요 국가의 음용수 내 과불화화합물 규제 현황을 비교하고, 각국이 채택한 규제 대상 물질, 설정 농도, 그리고 기저 규제 철학을 분석하였다. 특히 본 연구에서는 미국의 독성 및 위해성 기반 과학적 규제 체계를 근거로, 과불화화합물의 독성참고치(RfD) 및 발암계수(CSF)가 어떻게 도출되고 규제 기준으로 변환되는지 단계적으로 설명하였다. 또한, 개별 과불화화합물의 위해성을 넘어서, 혼합된 과불화화합물의 누적 위해성(HI) 산정 방식의 과학적 배경을 함께 살펴보았다. 이러한 국제적 규제 진전에도 불구하고, 현재 우리나라의 경우 3종 과불화화합물만 수질감시항목으로 지정되어 있을 뿐, 인체 위해성에 기반한 법적 수질기준은 마련되지 않은 실정이다. 또한, 현재의 국내 감시체계에서는 다종 과불화화합물의 혼합 노출로 인한 누적 위해성을 평가하지 못하는 구조적 한계가 있다. 이에 본 논문은 국제적인 규제 동향과 과학적 기준 설정 원리를 종합적으로 분석하고, 주요 국가의 모범사례를 바탕으로 국내 과불화화합물 음용수 규제 체계의 발전을 위한 시사점을 제시하였다.
From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for tiamulin (TML) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with TML at the concentration of 25 g/L (TML-1, n=24) and 50 g/L (TML-2, n=24) for 5 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 1, 2, 3 and 5 days, respectively. According to the previously established analysis method, residual TML concentrations in poultry tissues were determined using LC-MS/MS. In TML-1, TML in all tissues was detected less than LOQ at 2 days after drug treatment. In TML-2, TML in liver and kidney was detected more than LOQ at 2 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of TML-1 and TML-2 in poultry tissues were established to 0 and 2 days, respectively. In conclusion, the estimated WT of TML in poultry tissues is shorter than the current WT recommendation of 5 days for TML in broiler chickens.
Organoleptic parameters such as color, odor, and flavor influence consumer perception of drinking water quality. This study aims to evaluate the taste of the selected bottled and tap water samples using an electronic tongue (E-tongue) instead of a sensory test. Bottled and tap water's mineral components are related to the overall preference for water taste. Contrary to the sensory test, the potentiometric E-tongue method presented in this study distinguishes taste by measuring the mineral components in water, and the data obtained can be statistically analyzed. Eleven bottled water products from various brands and one tap water from I city in Korea were evaluated. The E-tongue data were statistically analyzed using multivariate statistical tools such as hierarchical clustering analysis (HCA), principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). The results show that the E-tongue method can clearly distinguish taste discrimination in drinking water differing in water quality based on the ion-related water quality parameters. The water quality parameters that affect taste discrimination were found to be total dissolved solids (TDS), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), sulfate (SO4 2-), chloride (Cl-), potassium (K+) and pH. The distance calculation of HCA was used to quantify the differences between 12 different types of drinking water. The proposed E-tongue method is a practical tool to quantitatively evaluate the differences between samples in water quality items related to the ionic components. It can be helpful in quality control of drinking water.
This study investigated ethopabate (EPB) residues in edible tissues of broiler chickens given in drinking water and established the withdrawal time (WT) of EPB in poultry tissues. Twenty-four healthy Ross broiler chickens were orally administered with EPB at the concentration of 3.8 mg/L for 14 days (EPB-1, n=24) and 15.2 mg/L for 7 days (EPB-2, n=24) through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 0, 1, 3, and 5 days, respectively. EPB residue concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient values ranged from 0.9980 to 0.9998, and the limits of detection and quantification (LOQ) were 0.03~0.09 and 0.1~0.3 μg/kg, respectively. Mean recoveries in muscle, liver, kidney and skin/fat tissues were 95.9~109.8, 108.7~115.3, 89.9~96.6 and 86.7~96.8%, respectively, and coefficient of variations were less than 17.11%. At the end of the drug-administration period (0 day), EPB was detected at levels under the LOQ in all tissues from both the EPB-1 and EPB-2 groups. According to the results of EPB residue in Ross broiler tissues, withdrawal periods of both EPB-1 and EPB-2 in poultry tissues were established to 0 day. In conclusion, the developed analytical method is suitable for the detection of EPB in poultry tissues, and the estimated WT of EPB in poultry tissues will contribute to ensuring the safety of Ross broiler chickens.
From 2020, Korean Animal and Plant Quarantine Agency has reset the withdrawal time (WT) for veterinary drugs typically used in livestock in preparation for the introduction of positive list system (PLS) program in 2024. This study was conducted to reset the MRL for amprolium (APL) in broiler chickens as a part of PLS program introduction. Forty-eight healthy Ross broiler chickens were orally administered with APL at the concentration of 60 mg/L (APL-1, n=24) for 14 days and 240 mg/L (APL-2, n=24) for 7 days through drinking water, respectively. After the drug treatment, tissue samples were collected from six broiler chickens at 0, 1, 3 and 5 days, respectively. Residual APL concentrations in poultry tissues were determined using LC-MS/MS. Correlation coefficient (0.99 >), the limits quantification (LOQ, 0.3~5.0 μg/kg), recoveries (81.5~112.4%), and coefficient of variations (<15.5%) were satisfied the validation criteria of Korean Ministry of Food and Drug Safety. In APL-1, APL in all tissues except for kidney was detected less than LOQ at 3 days after drug treatment. In APL-2, APL in liver and kidney was detected more than LOQ at 5 days after treatment. According to the European Medicines Agency’s guideline on determination of withdrawal periods, withdrawal periods of APL-1 and APL-2 in poultry tissues were established to 3 and 2 days, respectively. In conclusion, the developed analytical method is sensitive and reliable for detecting APL in poultry tissues. The estimated WT of APL in poultry tissues is longer than the current WT recommendation of 2 days for APL in broiler chickens.
The emergence of micropollutants in natural water sources due to the overuse of anthropogenic chemicals in industry and households has threatened the production of clean and safe tap water in drinking water treatment plants. Conventional physicochemical processes such as coagulation/flocculation followed by sand filtration are not effective for the control of micropollutants, whereas chemical oxidation processes (applying chlorine, permanganate, ozone, etc.) are known to be promising alternatives. Determining the optimum oxidant dose is important issue related to the production of disinfection by-products as well as unnecessary operating cost, and is made possible by simulations of target-micropollutant abatement based on kinetic model equation consisting of second-order rate constant (between the oxidant and the target) and oxidant exposure. However, the difficulty in determining oxidant exposure as a function of complex water quality parameters limits the field application of kinetic model equation. With respect to representative oxidants used in drinking water treatment plants, this article reviews two main approaches for determining oxidant exposure: i) direct measurement in situ and ii) prediction by empirical models based on key water quality parameters. In addition, we discussed research requirements to improve the predictive accuracy of the empirical models for oxidant exposure and to develop a rational algorithm to determine optimal oxidant dose by considering the priority of the target pollutants to be treated.
국내 Y정수처리시설에 20-40 m3/m2/h의 표면부하율을 갖는 고속 용존공기부상공정을 도입하였다. 우선, 용존공기부상공정과 입상활성탄 공정이 결합된 반응기를 일처리용량 500 m3/day의 조건으로 운전하였다. 운전결과는 두 공정이 원수내 탁도, 조류, 지오스민, 2-MIB를 감소시킬 수 있음을 증명하였다. 도출된 최적 설계요소를 활용하여 현장규모의 공정(5,000 m3/day)에 용존공기부상공정을 도입하였다. 여름철 56일간 조류와 탁도 제거율을 평가하였다. 처리수 내 조류의 개체수는 20-30 cells/mL 이하로 유지되었으며, 조류 제거효율은 80-89%를 기록하였다. 침전법 및 용존공기부상공정 처리수질의 탁도 제거효율을 비교한 결과 평균 탁도 제거효율은 77%를 나타냈다. 이러한 결과들은 고속 용존공기부상공정이 여름철 음용수의 탁도 및 조류와 같은 저밀도 고형물을 제거하는데 유의미한 방법임을 나타냈으며, GAC는 맛・냄새를 유발하는 화합물(지오스민, 2-MIB)를 제거할 수 있는 공정 옵션인 것을 확인하였다.
Most of the drinking water dams managed by the local governments in Korea are earthfill dams, and these dams have almost no geotechnical property information necessary for seismic performance evaluation. Nevertheless, in the rough planning stage for improving seismic safety for these dams, it is necessary to classify their relative seismic hazard against earthquakes and conduct an additional ground investigation. The zero seismic failure probability curve is a curve suggested in this study in which the probability of failure due to an earthquake becomes ‘0’ regardless of the geotechnical properties of the earthfill dam. By examining the method and procedure for calculating failure probability due to an earthquake suggested in previous researches, the zero seismic failure probability curves for an earthquake in 1,000-year and 2,400-year return periods in Korea were presented in the form of a hyperbola on the plane of the dam height versus freeboard ratio (ratio of freeboard to dam height), respectively. The distribution characteristics of the dam height and the freeboard ratio of 81 Korean earthfill dams were presented. The two proposed zero seismic failure probability curves are shown on the plane of the dam height versus freeboard ratio, and the relative seismic hazard of 81 dams can be classified into three groups using these curves as boundaries. This study presented the method of classifying the relative seismic hazard and the classification result.
Water treatment process simulator is the tool for predicting sequential changes of water quality in a train of unit processes. This predicts the changes through governing equations that represent physicochemical performance of each unit processes with an initial and boundary conditions. Since there is no operational data for the design of a water treatment facility, there is no choice but to predict the performance of the facility by assuming initial and boundary conditions in virtual reality. Therefore, a simulator that can be applied in the design stage of a water treatment facility has no choice but to be built as a numerical analysis model of a deductive technique. In this study, we had conducted basic research on governing equations, inter-process data-flow, and simulator algorithms for the development of simulators. Lastly, this study will contribute to design engineering tool development research in the future by establishing the water treatment theory so that it can be programmed in a virtual world and suggesting a method for digital transformation of the water treatment process.
Microplastics have become a rising issue in due to its detection in oceans, rivers, and tap water. Although a large number of studies have been conducted on the detection and quantification in various water bodies, the number of research conducted on the removal and treatment of microplastics are still comparatively low. In the current research, the inflow and removal of microplastics were investigated for various drinking water treatment plants around the world. Addition to the investigation of filed research, a survey was also conducted on the current research trend on microplastic removal for different treatment processes in the drinking water treatment plants. This includes the researches conducted on coagulation/flocculation, sedimentation, dissolved air flotation, sand filtration and disinfection processes. The survey indicated mechanisms of microplastic removal in each process followed by the removal characteristics under various conditions. Limitations of current researches were also mentioned, regarding the gap between the laboratory experimental conditions and field conditions of drinking water treatment plants. We hope that the current review will aid in the understanding of current research needs in the field of microplastic removal in drinking water treatment.
This study is focused on effects of factors that affect the formation of THMs during chlorination in drinking water treatment. During the chlorination, chlorine consumption is increased by increasing the initial chlorine dose, the pH and the total dissolved solid (TDS) concentration. Also THMs formation is increased up to 58.82 μg/L and 55.54 μg/L by increasing initial chlorine concentration and increasing pH. However, concentration of chloroform is decreased by increasing TDS concentration. This is caused the cation(Na+) of the total dissolved solids preferentially reacts with the functional groups of the organic material which influence the trihalomethane formation. But total trihalomethane formation is increased up to 127.46 μg/L by Br- contained in the total dissolved solids. DOC reduction was not influenced by any of the factors.
본 연구는 국내의 고온다습한 하절기에 산란계에 음용수 온도가 생산성, 호르몬 농도 및 혈액성상에 미치는 영향을 구명하고자 실행하였다. 52주령 하이라인 갈색종 산란계 432수를 3개 처리구와 8반복으로 반복당 18수씩 케이지 사육장(550 cm2/수)에 배치하였고, 처리구별로 14.5, 24.0 및 32.5℃의 음용 수를 4주간 급수하였다. 산란계의 생산성은 산란율과 난중을 매일 조사하여 계산하였고, 호르몬, 혈액 성상 및 계란품질은 사양실험 종료 후 채집하여 분석하였다. 본 연구결과 산란율과 1일 산란양은 14.5℃ 의 급수구에서 유의적으로 개선되었고(p<0.05), 사료섭취량과 난중은 14.5와 24.0℃ 급수구에서 32.5℃ 에 비하여 현저히 증가하였다(p<0.05). 계란의 난백높이와 호우유닛은 음용수 온도에 따른 처리구간 통계적 차이가 없었다. 난각강도는 14.5℃ 급수 처리구에서 증가하였고(p<0.05) 난각두께도 개선되는 경향을 보였지만 처리구간에 통계적 차이는 없었다. 또한 혈청과 간의 GH와 IGF-I 농도는 32.5, 24.0 및 14.5℃ 급여구 순서로 증가하였고(p<0.05), 코티코스테론은 감소되었는데 14.5℃에서 가장 개선되었다(p<0.05). 이외에도 혈중 AST와 콜레스테롤은 14.5℃의 음용수 처리구에서 24.0과 32.5℃에 비하여 유의적으로 감소하였고(p<0.05), HDL콜레스테롤, 단백질 및 글루코오스는 처리구간에 통계적 차이가 없 었지만, 혈중 중성지방은 14.5℃처리구에서 현저하게 감소되었다(p<0.05). 그러므로 여름철 14.5℃의 음용수를 급여하면 산란계에서 고온스트레스를 저감하므로서 생산성, 계란품질 및 혈액성상을 개선하였다.
The drinking water supply system applicable to the laying hen consists of air-water heat pumps, drinking water tanks, heat stroage tank, circulation pumps, PE pipes, nipples, and control panels. When the heat pump system has power of 7.7 to 8.7 kW per hour, the performance coefficient is between 3.1 and 3.5. The supply temperature from the heat pump to the heat stroage tank was stabilized at about 12±1°C, but the return temperature showed a variation of from 8 to 14°C. Stratified temperature in the storage tank appeared at 12.°C, 13.5°C and 14.4°C, respectively. The drinking water supply temperature remained set at 15°C and 25°C, and the conventional tap water showed a variation for 23°C to 30°C. As chickens grow older, the amount of food intake and drinking water increased. y = -0.0563x2 + 4.7383x + 8.743, R2 = 0.98 and the feed intake showed y = -0.1013x2 + 8.5611x. In the future, further studies will need to figure out the cooling effect on heat stress of livestock.
A Gravity-driven membrane (GDM) system is one of the promising solutions for household drinking water treatment in the developing countries. In this study, the GDM system was tested for optimizing manual cleaning protocols using three different feed water solutions. Two types of manual cleaning were performed to delay the permeability decrease, cleaning between batches and long-term cleaning. The optimized cleaning between batches protocol was 3 twisting and 10 vertical shaking. And the optimized long-term cleaning protocol was 70 vertical shaking for both the middle region of the module and near the header part. These cleaning protocols allowed the system to produce sufficient water to meet the daily minimum water requirements for a 5-person family, even for using the wastewater influent. The system produced Escherichia coli free water.
A nationwide survey of 8 N-nitrosamines in finished water samples from drinking water treatment plants (DWTPs) in Korea was conducted. The samples were pre-treated by solid-phase extraction (SPE) and analyzed using a gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). According to the study results, four N-nitrosamines (NDMA, NDEA, NMOR, NDBA) were detected for three consecutive years, NMEA and NPYR were only found in samples collected in 2013. Two of these N-nitrosamines, N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA), have received attention and were the most commonly detected. The concentration of NDMA and NDEA in this study ranged from 0.002 μg/L to 0.013 μg/L and in 0.001 μg/L to 0.008 μg/L, respectively. In comparison to studies performed in EPA(UCMR2), the concentrations of NDMA (from 0.002 μg/L to 0.630 μg/L) and NDEA (from 0.005 μg/L to 0.100 μg/L) observed in the this study were low.
본 연구는 고온다습한 하절기에 음수의 형태가 닭의 생산성, 육질, 혈액의 성상에 미치는 영향을 구명하고자 실행하였다. 8일령 로스종 360수를 4개 처리구인 수돗물, 이온수, 냉수 및 냉이온수(냉수+이온수)로 처리구당 6반복으로 평사에 수용하여 5주령까지 급수하였다. 계사내부 평균 온도와 습도는 30.9℃와 74.0%였으며, 수돗물의 평균온도는 29.5℃였다. 이온수는 정전기를 이용하여 물을 이온화하였고, 냉수는 15℃로 고정하여 급수하였다. 증체량, 사료섭취량 및 사료요구율은 주간으로 측정하였으며, 혈액과 계육 샘플은 실험 종료시에 채취하였다. 사육전기 21일령에 증체량은 수돗물 처리구에서 다른 처리구에 비하여 낮았지만 통계적 차이는 없었으며, 사육후기의 35일령에 이온수, 냉수, 냉이온수 처리구에서수돗물 처리구에 비하여 현저하게 높게 나타났다(p<0.01). 사료섭취량은 증체와 동일하게 사육전기에는 처리구간에 일관적 차이가 없었지만 사육후기에 수돗물 처리구에 비하여 다른 처리구에서 매우 개선 되는 경향을 보였다(p<0.01). 사료요구율은 사양실험 전기간에서 이온수, 냉수 및 냉이온수 처리구에서 매우 개선되었다(p<0.05). 계육의 가슴살에서 명도는 수돗물 처리구에서 높게 나타났으며, 적색도는 낮은 경향을 보였다. 황색도는 일관성이 없었지만 pH는 수돗물 처리구에서 다른 처리구에 비하여 낮게 나타났다(p<0.05). 조리감량은 이온수, 냉수 및 냉이온수 처리구에서 수돗물에 비하여 매우 낮았지만(p<0.05) 연도는 높은 경향을 보였다. 혈중 알부민과 단백질은 처리구간에 차이가 없었지만, 중성지방은 이온수, 냉수 및 냉이온수 처리구에서 낮은 경향을 보였다(p<0.05). 혈중 포도당은 처리구간에 차이가 없었지만 HDL 콜레스테롤은 이온수, 냉수, 냉이온수 처리구에서 수돗물 처리구에 비해 현저하게 높게 나타났다(p<0.05). 본 실험 결과 혹서기 육계에 냉이온수 급수는 생산성 및 육질을 개선하고 혈중HDL을 높게 하였다.