GC-MS/MS using liquid-liquid extraction (LLE) and C18 cartridges was used to identify and quantify levels of chlorpyrifos, chlorpyrifos-methyl, cypermethrin, deltamethrin and permethrin in bulk raw milk. A calibration curve spanning 10 ng/mL to 200 ng/mL was obtained with a satisfactory correlation coefficient of 0.99. The limits of detection (LOD) and limits of quantitation (LOQ) for chlorpyrifos, chlorpyrifos-methyl, cypermethrin, deltamethrin, and permethrin in the matrix ranged from 0.06 to 1.81 ng/mL and 0.19 to 6.04 ng/mL, respectively. The recoveries of 5 pesticides from spiked samples at 37.5-125 ng/mL ranged from 86.1 to 102.1%. The measurement of uncertainty of the GC-MS/MS method for these five pesticides was developed based on the analytical process and quantification. An analysis method that is easier and faster than the method specified in the Korean food standards codes for analyzing these five pesticides in raw material milk was developed. Moreover, the analytical method for chlorpyrifos, chlorpyrifos-methyl, cypermethrin, deltamethrin, and permethrin in bulk raw milk by GC-MS/MS was established.
최근 선박용 연료유에 대한 황 함유량 규제를 준수하기 위해 저유황유의 수요가 증가하고 있다. 그러나 저유황유를 공급하는 시기, 지역, 회사 별로 그 품질이 상이함에 따라 선내 연료유 저장탱크에서는 과도한 슬러지가 발생하는 등 혼합 안정성에 대한 문제가 제기되고 있다. 따라서 본 연구는 초음파의 캐비테이션 현상을 이용하여 저유황유의 품질 향상을 하고자 하였다. 선내 저장 탱크에서 이종의 연료유가 혼합되는 상황을 모사하기 위해 두 가지 종류의 저유황유(황 함유량 0.5 % 이하 MGO, MDO)를 혼합하여 시료유로 사용하였다. 원료유와 50 wt.% 씩 혼합한 시료유를 120분 동안 초음파 처리하였으며, 40분 주기로 채취된 샘플은 GC/MS 분석을 수행하여 초음파 조사 시간에 따른 시료유의 조성 변화를 분석하였다. 연구결과, 초음파의 캐비테이션 효과로 인하여 화학결합이 깨지면서 MGO 내 존재하는 고분자량 화합물의 감소와 저분자량의 화합물 증가가 관찰되었다. MDO와 혼합유의 경우, 초음파 조사 후 저분자 화합물에 대한 상대 존재 비의 부분적 증가가 관찰되었지만 시간과 상대 존재비 사이의 상관관계는 관찰되지 않았다.
본 연구는 조제유류 중 지방산에 대해 최신 분석법을 마련하고자 수행하였다. 조제유류 중 지방산 함량 분석을 위해 GC를 이용한 분석법을 확립하고 시중에 유통 중인 제품을 대상으로 적용성을 검토하였다. 분석법 검증은 특이성, 직선성, 검출한계 및 정량한계, 정확성, 정밀성에 대해 수행되었다. Linoleic acid 및 α-linolenic acid의 0.1-5 mg/ mL 농도범위에서 R2=0.999 이상의 우수한 직선성을 확인할 수 있었다. Linoleic acid 및 α-linolenic acid의 LOD는 각각 0.06 mg/mL, 0.01 mg/mL, LOQ는 각각 0.16 mg/mL, 0.03 mg/mL였다. 표준인증물질 분석을 통해 정확성을 검토 하였으며, linoleic acid 및 α-linolenic acid의 회수율은 각각 100.8%와 101.1%로 확인하였다. 정밀성을 검토한 결과 시료 채취량에 따른 반복성은 linoleic acid 1.4-2.9%, α- linolenic acid 1.1-2.7%이었고, 실험실간 재현성은 각각 2.8%, 1.5%임을 확인하였다. 본 연구에서 확립된 분석법을 적용하여 국내 유통 중인 조제유류 및 조제식 제품 12건에 대해 적용성 검토를 실시한 결과 전체 시료에서 분석이 용이 하였으며, 모두 기준·규격에 적합함을 확인하였다. 본 결과로부터 확립된 GC를 이용한 분석법은 조제유류 중 지방산 함량을 확인하기에 적합함을 확인하였으며 국내 식품 영양 성분의 관리 기반을 강화하는데 기여할 것으로 사료된다.
The purpose of this study is to create a new odor analysis technology that combines the separation technology of GC and the measurement of MOS sensors. The detector of the GC system is replaced with the MOS sensor to analyze various odor compounds. Carrier gas also used air in the normal atmosphere through a micro pump. Therefore, it is possible to develop a portable odor analysis device since no additional cylinder is needed. Retention times for H2S, C7H8, and C2H4O analyzed by the combined GC/MOS system were identified as 1.28 minutes, 3.88 minutes and 1.77 minutes, respectively. Measurement reproducibility of odorous RT was very good at less than 1.2 %RSD. Also, the magnitude of the peak as a result of changes in the concentration of each odor showed a linear proportional relationship. Thus, a new method could be proposed to analyze various odorous substances with the combined GC/MOS system.
항공터빈유는 등유 기반의 석유제품에 산화 방지제(Antioxidant), 빙결 방지제(Fuel system icing inhibitor, FSII), 전기전도도 향상제(Electrical conductivity improver) 등의 첨가제를 첨가하여 항공기 연료로서 필요한 성능 향상 및 보관이나 이송 등에 관한 특정한 능력을 부여시키고 있다. 이들 첨가제는 항공터빈유의 품질에 이상이 발생하거나 다른 석유제품과 구별하기 위하여 그 첨가량을 정성 및 정량적으로 분석할 수 있어야 한다. 항공터빈유는 수많은 탄화수소 화합물로 구성된 복잡한 화합물이기 때문에 미량으로 첨가된 산화 방지제와 빙결 방지제를 분석하기 위하여 Multi-dimensional GC-MS (MDGC-MS)의 Deans switching 기술을 적용하였다. 2.5 - 20 mg/L 농도 범위의 산화 방지제와 빙결 방지제를 MDGC-MS로 정량 및 정성적으로 분석할 수 있었으며, 검출 한계는 1-dimensional GC-MS의 분석 결과와 비교하여 약 2배 정도 낮았다. 본 연구에서 개발된 시험 방법은 기존의 GC-MS보다 첨가제 피크의 분리능이 더 우수하였으며, 시료의 전처리가 필요없이 두 가지 첨가제를 동시에 분석할 수 있었다.
연료유로 사용되는 석유제품은 각각의 품질기준, 등급, 사용용도에 따라 여러 종류가 있다. 국가 별로 유류에 세금을 부과하는 정도에 따라 동일한 석유제품이라 하더라도 가격차이가 발생한다. 가격이 저렴한 비과세의 석유제품을 상대적으로 고가인 수송용 연료에 불법적으로 혼합하는 행위로 인하여 탈세, 환경오염, 차량고장 등의 문제가 발생한다. 이러한 석유제품간 불법 혼합을 방지하기 위해 특정 석유제품에 미량의 식별제(Marker)를 법적으로 첨가하고 있다. 국내에서는 가정용 및 상업용 연료로 사용되는 등유를 자동차용 경유에 불법적으로 혼합하는 행위를 방지하기 위하여 식별제를 도입하여 사용하고 있으며, UV-Vis 분광광도계나 HPLC를 이용하여 식별제 함량을 정량적으로 분석하고 있다. 본 연구에서는 기존에 식별제 함량 분석을 위해 발색제를 첨가하거나 시료를 전처리하는 조작없이 GC-MS로 석유제품에 첨가된 식별제를 정성적 및 정량적으로 분석하는 방법을 개발하였다.
본 연구는 건강기능식품의 복합제품 개발 및 일반식품 형태의 제품개발 확대에 따라 옥타코사놀의 특이성 및 감도 등이 개선된 분석법을 마련하여 향후 공정시험법에 활용할 수 있도록 하였다. 건강기능식품 중 옥타코사놀의 함량분석을 위해 GC-MS를 이용한 분석법을 확립하고 유통중인 제품을 대상으로 적용성을 검토하였다. 분석법 검증은 특이성, 직선성, 검출한계 및 정량한계, 정확성, 정밀성에 대해 수행하였다. 12.5~200.0 μg/L의 농도범위에서 r2 = 0.999 이상의 우수한 직선성을 확인할 수 있었으며, 검 출한계와 정량한계는 각각 4.5, 13.8 μg/L이었다. 공시료에 표준물질 첨가법을 이용하여 정확성을 검토하였으며 50, 100, 150 μg/L의 농도에서 각각 94, 93, 109%의 회수율을 확인할 수 있었다. 정밀성 결과에서는 시료 채취량을 80 mg, 120 mg, 220 mg으로 각기 달라하여 측정한 결과 상대표준편차는 1.8~2.4%로 확인되었다. 실험실간재현성은 1.0~2.3%로 나타났다. 본 연구에서 확립된 분석법을 적용하여 유통제품 9건에 대해 적용성 검토를 실시한 결과 전체 시료에서 분석이 용이하였으며, 모두 표시기준에 적합함을 확인하였다.
본 연구를 통하여 확립된 GC-MS를 이용한 건강기능식품 중 옥타코사놀 분석법은 향후 공정시험법으로 활용할 수 있으며 국내 건강기능식품의 관리 기반을 강화하는데 기여할 것으로 사료된다.
본 연구는 국내 생산 및 수입 양식 수산물에 대해 잔류 할 수 있는 향정신성 의약품인 디아제팜 대한 안전관리 강화기반을 위해 마련되었다. 중국인민공화국 국가 표준 시험법(GB 29697-2013)을 기반으로 전처리 방법을 개선 하여 GC-MS/MS 시험법을 확립하였으며, LC-MS/MS 방 법과의 기기간 검증을 통해 확립된 시험법의 선택성, 정량한계 및 회수율에 대한 검증을 통해 디아제팜 시험법으로서의 유효성을 확인하였다. LC-MS/MS의 경우 아세토니트릴로 추출 후 PSA를 이용해 정제하였고, GC-MS/MS의 경우 아세토니트릴로 추 출후 C18카트리지를 이용해 정제하였다. 디아제팜은 표준용액을 정량한계를 포함한 농도에 따라 검량선을 작성한 결과 두 기기 모두 r2> 0.99 이상의 직선성을 확인하였다. 본 실험에서의 검출한계와 정량한계는 LC-MS/MS 및 GCMS/ MS 모두 0.0004 mg/kg, 0.001 mg/kg 수준이었으며, 평균 회수율은 각각 99.8~106%, 109~124%이었다. 또한, 분석오차는 모두 15% 이하로 정확성 및 재현성이 우수하였 으며, CODEX 가이드라인 규정에 만족하는 수준이었다. 따라서 개발된 시험법은 안전한 수산물의 국내 유통과 잔 류실태조사를 위해 활용될 것으로 기대한다.
가소제는 딱딱한 특성을 지닌 플라스틱에 유연성 및 탄성을 주어 제품으로서의 부드러운 특성을 갖출 수 있도록 첨가되는 물질로서, 주로 고분자 물질에 첨가되어 유연성을 부여함으로써 가공성을 개선하 고, 내한성, 내휘발성, 전기적 특성을 강화할 목적으로 이용되고 있다. 대부분의 가소제는 비활성 액체로서 용매의 기능과 유사한 역할을 하지만 분자량이 크고 휘발성이 없다. 또한, 석유화학제품에 용해되어 있는 경우, 다른 화합물과의 중첩효과(matrix effect)에 의해 가소제만을 분리하여 정성 및 정량분석하기에 어려움이 있다. 본 연구에서는 석유화학제품에서 검출될 수 있는 가소제의 대표적 성분인 DOA와 DOP에 대해 MD-GC/MS를 활용하여 정성 및 정량분석을 실시하여 최적의 가소제 분석 방법을 개발하고자 하였다.
항공유에 fatty acid methyl esters (FAME)가 혼합될 경우 연료 공급시스템과 항공기 엔진에 치명적인 고장의 원인이 될 수 있기 때문에 항공유 품질규격에서 FAME 함량을 50 mg/kg 이하로 규정 하고 있다. 무수히 많은 탄화수소로 구성된 항공유 중의 FAME 성분을 선택적으로 분석하기 어렵기 때문에 본 연구에서는 MDGC-MS를 사용한 새로운 시험방법을 개발하였다. Deans switching 시스템이 설치된 MDGC-MS를 이용하면 코코넛 오일이나 팜유 유래의 저분자량 FAME 성분도 분석이 가능함을 확인하였다. 개발된 시험방법은 FAME 피크의 머무름 시간을 약간 뒤로 이동시키는 매질 효과(matrix effect)를 현행의 기준 시험방법(IP 585)보다 약 20배 이하로 감소시킬 수 있었다. MDGC-MS는 항공 유에 미량의 FAME가 오염되었는지 여부를 정성 및 정량적으로 확인할 수 있는 시험방법으로 적합하였다.
유향성의 중국춘란과 향기가 없는 한국춘란의 인공교배를 통해 유향성 춘란품종의 육종이 진행되었다. 이 연구는 중국춘란과 중국춘란 교배종의 주요 향기성분을 분석하고자 하였다. 중국춘 란 중 ‘여호접’과 ‘용자’ 그리고 ‘교배종 A’(한국춘란ב여호접’)와 ‘교배종 B’(중국춘란×한국춘란)를 GC/MS를 이용하여 향기성분 분석을 수행하였다. Gas chromatogram 분석에서 중국춘란 ‘여호 접’의 경우 총 50개의 peak가 나타났다. 그 중 5개의 주요 peak에 해당하는 향기성분으로는 farnesol (67.94%), β-farnesene( 1.45%), β-bisabolene(1.03%), perillene (0.98%), guaiacol (0.92%)인 것으로 확인되었다. 중국춘란 ‘용자’의 경우 총 37개의 peak가 나타났다. 그 중 5개의 주요 peak에 대한 성분으로는 β-pinene(75.15%), nerolidol(8.57%), methyl jasmonate(2.99%) α-farnesene(2.48%), β-farnesene (2.11%)으로 추정되었다. ‘교배종 A’의 경우, 총 47개의 peak가 나타났다. 그 중 6개의 주요 peak에 대한 성분으로는 β-caryophyllene(58.72%), trans-α-bergamotene (15.92%), α-selinene(4.02%), α-farnesene(3.49%), β-farnesene (3.48%), nerolidol(2.62%)인 것으로 사료되었다. ‘교배종 B’의 경우, 총 31개의 peak가 나타났다. 그 중 9개의 주요 peak에 대한 성분으로는 guaiacol(23.38%), 1,4-dimethoxybenzene (12.59%), β-farnesene(10.62%), benzyl alcohol(10.49%), methyl jasmonate(6.46%), trans-α-bergamotene(4.29%), perillene(4.27%), β-caryophyllen(3.85%), methyl heptenone(3.08%)인 것으로 판 단되었다. 4개의 춘란 종류에서 공통적으로 발현되는 향기성분 은 β-farnesene이었다. 중국춘란 품종에서 발견되지 않았던 α-cedrene, cis-α-bergamotene, santalene, eryngial, veratrol, nerylacetone 등의 휘발성분들이 ‘교배종 A’와 ‘교배종 B’에서 검출되었다. 그 중 ‘교배종 A’와 ‘교배종 B’에서 공통으로 발견된 trans-α-bergamotene은 한국춘란 교배친에서 유래된 것으로 추 정된다. 이는 중국춘란과 한국춘란간의 교배과정을 통해 새로 운 향기성분조성을 지니는 품종을 창출할 수 있다는 것을 암시 하였다.
There has been growing concern over the emissions of formaldehyde and VOCs from automotive interior materials, as these could have an important impact on the in-vehicle air quality (IVAQ) of automotive vehicles. Odor along with VOCs refers to the automotive interior smell emitted directly or indirectly from any part of an automotive interior, based on human olfactory senses and a comfort evaluation of vehicle quality. The objective of this paper is to compare the odor intensity using GC/MS analysis method and odor sensory test in accordance with ISO 12219-2. For the compounds having low odor threshold value and high VOC concentration, it was found that there was the same tendency in each field of odor whether the instrument analysis method or the odor sensory test method was used.
Recently, polycosanol products have been actively introduced into the domestic market based on their potential biological activity. The analytical procedures of polycosanol, which determine the TMS derivatives of each polycosanol with GC-FID, were presented for inspection of standards. However, the conventional procedures are not readily applicable to polycosanol emulsion which is prepared by mixing polycosanol and water together with emulsifiers because of their interferences. Therefore, the quantitative analytical procedure of polycosanol emulsion with GC-MS at selected ion monitoring mode was proposed and its validity was inspected for standardization. The analysis of polycosanol standards according to the proposed procedure showed the following values: 90.5% for reproducibility; 0.48-5.83% for the RSD; 0.000479-0.001314 μg/μL for the LOD; 0.001452-0.003983 μg/μL for the LOQ; 80.38-108.98% for accuracy; and 0.01-4.88% for the coefficients of variation. The average reproducibilities of polycosanol emulsions according to the current procedure were 87.43±4.48% and 88±2.2%, respectively, which were within the 80-120% range of the designated amounts. Therefore, it was found that the proposed analytical procedure with GC-MS at SIM mode in this study would be promising for the accurate quantitative analysis of polycosanol emulsion.
전자코와 GC/MS 기기를 이용하여 나도풍란의 꽃에서발현되는 주요 향기성분 및 향기발현패턴을 분석하였다.전자코와 GC/MS 의 분석을 통해 전자코에서는 약 9개의 chromatogram peak 를 얻어냈고, GC/MS 기기분석에서는 약 13개 정도의 chromatogram peak를 얻어냈다. 전자코 peak 중에서 6가지 종류가 GC/MS chromatogrampeak와 공통적으로 나타났으며 즉 retention time 3.2초,4.2초, 5.4초, 5.8초, 6.3초, 6.9초의 peak였으며 그 peak에 해당되는 향기성분들은 각각 2-furanmethanol, linalool,citronellol, neral, nerodidol, benzoic acid, hexadecanoicacid, 1,2-benzenedicarboxylic acid로 추정되었다. 나도풍란군집에서 개체별로 향기발현량과 향기패턴을 비교분석한결과 주요성분으로 예측되는 6개 peak는 모든 개체에서발현되는 것으로 나타났지만 개체간 발현량에 차이가 있는 것으로 나타났다. 꽃의 발달단계별 향기발현정도를 분석하기 위한 실험에서 꽃의 발달 단계중 꽃봉오리 상태와 노화된 꽃에서는 향기발현량이 적었으며 꽃이 완전개화한 화서 중앙부위에 있는 꽃들에서 가장 많은 양의 향기가 발생되는 것으로 나타났다. 꽃의 기관별 향기분석에서는 나도풍란 꽃의 주요향기성분이 주로 sepal과 petal조직에서 가장 많이 발현되는 것으로 확인되었으며 column과 spur에서는 발생량이 매우 적은 것으로 나타났다. 일중 시간대별 주요향기성분의 발현량과 패턴을 분석한 결과 오전11시에 가장 높은 향기발현량을 보였으며 오후 5시 이후부터 향기발현량이 현저히 줄기 시작하여 저녁 8시 이후에는 향기성분이 발생되지 않았다. 빛 조사가 향기발현에 미치는 영향을 알아보기 위해 암처리와 광처리후 향기양과 패턴을 분석한 결과 암처리에서는 40시간 이후부터는 대체로 향기성분이 계속 줄어들었으며, 40시간연속적으로 빛을 조사한 후 20시에 전자코 분석을 한 결과 오전 시간대와 동일한 향기발현량과 발현패턴을 보여주었다. 이 결과를 통해 빛의 조사시간 및 생체리듬주기가 향기발현에 큰 영향을 줄 수 있는 요인임을 확인할수 있었다.
배양시간(6, 12, 24, 48시간)에 따른 Yersinia enterocolitica 균체 및 배지 대사체들의 변화를 이해하기 위하여 GC/MS와 다변량통계분석을 이용하여 분석한 결과 Partial Least Squares-Discriminant Analysis(PLS-DA) scores plots 상에서 배양시간에 따라 분석 시료들이 뚜렷하게 분리되었다. 시료들 사이의 차이에 관여하는 대사물질들을 동정한 결과 균체에서는 ethylene glycol, valine, ethanolamine, succinic acid, adenine, stearic acid, 배지에서는 glycine, fumaric acid, threonine, aminomalonic acid, malic acid, glutamic acid, citric acid가 배양시간에 따른 차이가 나는 것으로 확인되었다. 이들 대사물질들을 이용하여 관련 대사경로를 도출한 결과 배양시기에 따라 에너지 생성에 관여하는 대사경로가 주로 변하는 것으로 관찰되었다. Y. enterocolitica의 경우 대수기 초기에는 TCA cycle을 통해 에너지를 공급하다가 정지기에 들어서면서 정상적인 TCA cycle를 수행하지 못하고 ethanolamine 및 ethylene glycol 등 다른 탄소원 또는 질소원을 공급하는 것으로 확인되었다. 비록 관련된 많은 연구가 필요함에도 불구하고 대사체분석 기술을 활용한 Y. enterocolitica 균체 및 배지 분석 연구는 배양시간에 따른 대사과정의 변화를 관찰할 수 있을 뿐만 아니라 향후 균체 연구의 다양한 분야에 접목될 수 있을 것으로 사료된다.
삼채의 잎과 뿌리로부터 휘발성 화합물과 아미노산을 분석하였다. 휘발성 향기성분은 Headspace GC-MS방법으로 분석하였다. 잎 조직으로부터 18종의 휘발성화합물이 검출되었고, 21종의 화합물은 뿌리조직으로부터 분석되었다. 주요 향기성분은 diallyl disulphide였고, 잎(27.9%)과 뿌리(17.41)에서 가장 많이 함유하고 있었다. 또 다른 주요 황화합물은 methyl 2-propenyl disulfide, dimethyl disulfide, methyl 1-propenyl disulfide과 methyl 2-propenyl trisulfide이 잎과 뿌리에 모두 함유하고 있었다. 전체 46종 화합물 중 가장 많이 함유하고 있는 물질군은 황화합물이었다. 황화합물은 엽조직에 6종, 뿌리조직에는 5종이 함유되어 있었다. 또한 유리아미노산과 polyphenol성 화합물은 잎과 뿌리 조직에서 분석하였다. 잎과 뿌리 조직에서 아미노산은 20종과 19종이 각각 검출되었다. 총아미노산의 함량은 잎에서 0.134 mg/g, 뿌리조직에서 0.105 mg/g 함유하고 있었다. 총 polyphenol성 화합물 함량은 잎에서 0.28 mg/g, 뿌리에서 1.08 mg/g 함유하고 있었다. 이 결과는 삼채의 이용과 효율적인 재배에 기초자료를 제공할 수 있다.
페놀은 보통 대기로 배출되며 반감기가 비교적 짧은 물질로서 환경에 농축되는 경우는 드물다. 하지만, 누출사고가 발생되어 수계나 토양에 오염될 경우 페놀에 오염된 농수산물의 안전성을 확보하기 위하여 페놀을 정확하게 검출할 수 있는 시험법을 확립하고자 하였다. 식품 중 페 놀을 초음파추출기로 추출하고 GPC로 정제하여 GC/MS 로 분석하는 시험법을 확립하였으며, 시험법의 유효성 확인을 위한 실험 결과들이 AOAC 가이드라인에서 제시하 는 Criteria를 만족함으로써 시험법의 신뢰성을 확보할 수 있었다. 확립된 시험법은 식품 중 페놀의 오염조사 및 이행률 조사에 활용될 수 있다.